mirror of
https://github.com/bevyengine/bevy
synced 2024-12-23 03:23:20 +00:00
724b36289c
# Objective Resolves #7121 ## Solution Decouples `List` and `Array` by removing `Array` as a supertrait of `List`. Additionally, similar methods from `Array` have been added to `List` so that their usages can remain largely unchanged. #### Possible Alternatives ##### `Sequence` My guess for why we originally made `List` a subtrait of `Array` is that they share a lot of common operations. We could potentially move these overlapping methods to a `Sequence` (name taken from #7059) trait and make that a supertrait of both. This would allow functions to contain logic that simply operates on a sequence rather than "list vs array". However, this means that we'd need to add methods for converting to a `dyn Sequence`. It also might be confusing since we wouldn't add a `ReflectRef::Sequence` or anything like that. Is such a trait worth adding (either in this PR or a followup one)? --- ## Changelog - Removed `Array` as supertrait of `List` - Added methods to `List` that were previously provided by `Array` ## Migration Guide The `List` trait is no longer dependent on `Array`. Implementors of `List` can remove the `Array` impl and move its methods into the `List` impl (with only a couple tweaks). ```rust // BEFORE impl Array for Foo { fn get(&self, index: usize) -> Option<&dyn Reflect> {/* ... */} fn get_mut(&mut self, index: usize) -> Option<&mut dyn Reflect> {/* ... */} fn len(&self) -> usize {/* ... */} fn is_empty(&self) -> bool {/* ... */} fn iter(&self) -> ArrayIter {/* ... */} fn drain(self: Box<Self>) -> Vec<Box<dyn Reflect>> {/* ... */} fn clone_dynamic(&self) -> DynamicArray {/* ... */} } impl List for Foo { fn insert(&mut self, index: usize, element: Box<dyn Reflect>) {/* ... */} fn remove(&mut self, index: usize) -> Box<dyn Reflect> {/* ... */} fn push(&mut self, value: Box<dyn Reflect>) {/* ... */} fn pop(&mut self) -> Option<Box<dyn Reflect>> {/* ... */} fn clone_dynamic(&self) -> DynamicList {/* ... */} } // AFTER impl List for Foo { fn get(&self, index: usize) -> Option<&dyn Reflect> {/* ... */} fn get_mut(&mut self, index: usize) -> Option<&mut dyn Reflect> {/* ... */} fn insert(&mut self, index: usize, element: Box<dyn Reflect>) {/* ... */} fn remove(&mut self, index: usize) -> Box<dyn Reflect> {/* ... */} fn push(&mut self, value: Box<dyn Reflect>) {/* ... */} fn pop(&mut self) -> Option<Box<dyn Reflect>> {/* ... */} fn len(&self) -> usize {/* ... */} fn is_empty(&self) -> bool {/* ... */} fn iter(&self) -> ListIter {/* ... */} fn drain(self: Box<Self>) -> Vec<Box<dyn Reflect>> {/* ... */} fn clone_dynamic(&self) -> DynamicList {/* ... */} } ``` Some other small tweaks that will need to be made include: - Use `ListIter` for `List::iter` instead of `ArrayIter` (the return type from `Array::iter`) - Replace `array_hash` with `list_hash` in `Reflect::reflect_hash` for implementors of `List` |
||
---|---|---|
.. | ||
bevy_reflect_derive | ||
examples | ||
src | ||
Cargo.toml | ||
README.md |
Bevy Reflect
This crate enables you to dynamically interact with Rust types:
- Derive the Reflect traits
- Interact with fields using their names (for named structs) or indices (for tuple structs)
- "Patch" your types with new values
- Look up nested fields using "path strings"
- Iterate over struct fields
- Automatically serialize and deserialize via Serde (without explicit serde impls)
- Trait "reflection"
Features
Derive the Reflect traits
// this will automatically implement the Reflect trait and the Struct trait (because the type is a struct)
#[derive(Reflect)]
struct Foo {
a: u32,
b: Bar,
c: Vec<i32>,
d: Vec<Baz>,
}
// this will automatically implement the Reflect trait and the TupleStruct trait (because the type is a tuple struct)
#[derive(Reflect)]
struct Bar(String);
#[derive(Reflect, FromReflect)]
struct Baz {
value: f32,
}
// We will use this value to illustrate `bevy_reflect` features
let mut foo = Foo {
a: 1,
b: Bar("hello".to_string()),
c: vec![1, 2],
d: vec![Baz { value: 3.14 }],
};
Interact with fields using their names
assert_eq!(*foo.get_field::<u32>("a").unwrap(), 1);
*foo.get_field_mut::<u32>("a").unwrap() = 2;
assert_eq!(foo.a, 2);
"Patch" your types with new values
let mut dynamic_struct = DynamicStruct::default();
dynamic_struct.insert("a", 42u32);
dynamic_struct.insert("c", vec![3, 4, 5]);
foo.apply(&dynamic_struct);
assert_eq!(foo.a, 42);
assert_eq!(foo.c, vec![3, 4, 5]);
Look up nested fields using "path strings"
let value = *foo.get_path::<f32>("d[0].value").unwrap();
assert_eq!(value, 3.14);
Iterate over struct fields
for (i, value: &Reflect) in foo.iter_fields().enumerate() {
let field_name = foo.name_at(i).unwrap();
if let Some(value) = value.downcast_ref::<u32>() {
println!("{} is a u32 with the value: {}", field_name, *value);
}
}
Automatically serialize and deserialize via Serde (without explicit serde impls)
let mut registry = TypeRegistry::default();
registry.register::<u32>();
registry.register::<i32>();
registry.register::<f32>();
registry.register::<String>();
registry.register::<Bar>();
registry.register::<Baz>();
let serializer = ReflectSerializer::new(&foo, ®istry);
let serialized = ron::ser::to_string_pretty(&serializer, ron::ser::PrettyConfig::default()).unwrap();
let mut deserializer = ron::de::Deserializer::from_str(&serialized).unwrap();
let reflect_deserializer = ReflectDeserializer::new(®istry);
let value = reflect_deserializer.deserialize(&mut deserializer).unwrap();
let dynamic_struct = value.take::<DynamicStruct>().unwrap();
assert!(foo.reflect_partial_eq(&dynamic_struct).unwrap());
Trait "reflection"
Call a trait on a given &dyn Reflect
reference without knowing the underlying type!
#[derive(Reflect)]
#[reflect(DoThing)]
struct MyType {
value: String,
}
impl DoThing for MyType {
fn do_thing(&self) -> String {
format!("{} World!", self.value)
}
}
#[reflect_trait]
pub trait DoThing {
fn do_thing(&self) -> String;
}
// First, lets box our type as a Box<dyn Reflect>
let reflect_value: Box<dyn Reflect> = Box::new(MyType {
value: "Hello".to_string(),
});
// This means we no longer have direct access to MyType or its methods. We can only call Reflect methods on reflect_value.
// What if we want to call `do_thing` on our type? We could downcast using reflect_value.downcast_ref::<MyType>(), but what if we
// don't know the type at compile time?
// Normally in rust we would be out of luck at this point. Lets use our new reflection powers to do something cool!
let mut type_registry = TypeRegistry::default();
type_registry.register::<MyType>();
// The #[reflect] attribute we put on our DoThing trait generated a new `ReflectDoThing` struct, which implements TypeData.
// This was added to MyType's TypeRegistration.
let reflect_do_thing = type_registry
.get_type_data::<ReflectDoThing>(reflect_value.type_id())
.unwrap();
// We can use this generated type to convert our `&dyn Reflect` reference to a `&dyn DoThing` reference
let my_trait: &dyn DoThing = reflect_do_thing.get(&*reflect_value).unwrap();
// Which means we can now call do_thing(). Magic!
println!("{}", my_trait.do_thing());
// This works because the #[reflect(MyTrait)] we put on MyType informed the Reflect derive to insert a new instance
// of ReflectDoThing into MyType's registration. The instance knows how to cast &dyn Reflect to &dyn MyType, because it
// knows that &dyn Reflect should first be downcasted to &MyType, which can then be safely casted to &dyn MyType
Why make this?
The whole point of Rust is static safety! Why build something that makes it easy to throw it all away?
- Some problems are inherently dynamic (scripting, some types of serialization / deserialization)
- Sometimes the dynamic way is easier
- Sometimes the dynamic way puts less burden on your users to derive a bunch of traits (this was a big motivator for the Bevy project)