bevy/crates/bevy_app/Cargo.toml
David M. Lary 5c52d0aeee
System Stepping implemented as Resource (#8453)
# Objective

Add interactive system debugging capabilities to bevy, providing
step/break/continue style capabilities to running system schedules.

* Original implementation: #8063
    - `ignore_stepping()` everywhere was too much complexity
* Schedule-config & Resource discussion: #8168
    - Decided on selective adding of Schedules & Resource-based control

## Solution
Created `Stepping` Resource. This resource can be used to enable
stepping on a per-schedule basis. Systems within schedules can be
individually configured to:
* AlwaysRun: Ignore any stepping state and run every frame
* NeverRun: Never run while stepping is enabled
    - this allows for disabling of systems while debugging
* Break: If we're running the full frame, stop before this system is run

Stepping provides two modes of execution that reflect traditional
debuggers:
* Step-based: Only execute one system at a time
* Continue/Break: Run all systems, but stop before running a system
marked as Break

### Demo

https://user-images.githubusercontent.com/857742/233630981-99f3bbda-9ca6-4cc4-a00f-171c4946dc47.mov

Breakout has been modified to use Stepping. The game runs normally for a
couple of seconds, then stepping is enabled and the game appears to
pause. A list of Schedules & Systems appears with a cursor at the first
System in the list. The demo then steps forward full frames using the
spacebar until the ball is about to hit a brick. Then we step system by
system as the ball impacts a brick, showing the cursor moving through
the individual systems. Finally the demo switches back to frame stepping
as the ball changes course.


### Limitations
Due to architectural constraints in bevy, there are some cases systems
stepping will not function as a user would expect.

#### Event-driven systems
Stepping does not support systems that are driven by `Event`s as events
are flushed after 1-2 frames. Although game systems are not running
while stepping, ignored systems are still running every frame, so events
will be flushed.

This presents to the user as stepping the event-driven system never
executes the system. It does execute, but the events have already been
flushed.

This can be resolved by changing event handling to use a buffer for
events, and only dropping an event once all readers have read it.

The work-around to allow these systems to properly execute during
stepping is to have them ignore stepping:
`app.add_systems(event_driven_system.ignore_stepping())`. This was done
in the breakout example to ensure sound played even while stepping.

#### Conditional Systems
When a system is stepped, it is given an opportunity to run. If the
conditions of the system say it should not run, it will not.

Similar to Event-driven systems, if a system is conditional, and that
condition is only true for a very small time window, then stepping the
system may not execute the system. This includes depending on any sort
of external clock.

This exhibits to the user as the system not always running when it is
stepped.

A solution to this limitation is to ensure any conditions are consistent
while stepping is enabled. For example, all systems that modify any
state the condition uses should also enable stepping.

#### State-transition Systems
Stepping is configured on the per-`Schedule` level, requiring the user
to have a `ScheduleLabel`.

To support state-transition systems, bevy generates needed schedules
dynamically. Currently it’s very difficult (if not impossible, I haven’t
verified) for the user to get the labels for these schedules.

Without ready access to the dynamically generated schedules, and a
resolution for the `Event` lifetime, **stepping of the state-transition
systems is not supported**

---

## Changelog
- `Schedule::run()` updated to consult `Stepping` Resource to determine
which Systems to run each frame
- Added `Schedule.label` as a `BoxedSystemLabel`, along with supporting
`Schedule::set_label()` and `Schedule::label()` methods
- `Stepping` needed to know which `Schedule` was running, and prior to
this PR, `Schedule` didn't track its own label
- Would have preferred to add `Schedule::with_label()` and remove
`Schedule::new()`, but this PR touches enough already
- Added calls to `Schedule.set_label()` to `App` and `World` as needed
- Added `Stepping` resource
- Added `Stepping::begin_frame()` system to `MainSchedulePlugin`
    - Run before `Main::run_main()`
    - Notifies any `Stepping` Resource a new render frame is starting
    
## Migration Guide
- Add a call to `Schedule::set_label()` for any custom `Schedule`
    - This is only required if the `Schedule` will be stepped

---------

Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2024-02-03 05:18:38 +00:00

37 lines
1.1 KiB
TOML

[package]
name = "bevy_app"
version = "0.12.0"
edition = "2021"
description = "Provides core App functionality for Bevy Engine"
homepage = "https://bevyengine.org"
repository = "https://github.com/bevyengine/bevy"
license = "MIT OR Apache-2.0"
keywords = ["bevy"]
[features]
trace = []
bevy_ci_testing = ["serde", "ron"]
bevy_debug_stepping = []
default = ["bevy_reflect", "bevy_debug_stepping"]
bevy_reflect = ["dep:bevy_reflect", "bevy_ecs/bevy_reflect"]
[dependencies]
# bevy
bevy_derive = { path = "../bevy_derive", version = "0.12.0" }
bevy_ecs = { path = "../bevy_ecs", version = "0.12.0", default-features = false }
bevy_reflect = { path = "../bevy_reflect", version = "0.12.0", optional = true }
bevy_utils = { path = "../bevy_utils", version = "0.12.0" }
bevy_tasks = { path = "../bevy_tasks", version = "0.12.0" }
# other
serde = { version = "1.0", features = ["derive"], optional = true }
ron = { version = "0.8.0", optional = true }
downcast-rs = "1.2.0"
[target.'cfg(target_arch = "wasm32")'.dependencies]
wasm-bindgen = { version = "0.2" }
web-sys = { version = "0.3", features = ["Window"] }
[lints]
workspace = true