mirror of
https://github.com/bevyengine/bevy
synced 2024-12-01 08:59:11 +00:00
90b5ed6c93
# Objective Adjust instruction text in some newer examples to match the [example visual guidelines](https://bevyengine.org/learn/contribute/helping-out/creating-examples/#visual-guidelines). ## Solution Move text 12px from edge of screen ## Testing ``` cargo run --example alter_mesh cargo run --example alter_sprite cargo run --example camera_orbit cargo run --example projection_zoom cargo run --example irradiance_volumes cargo run --example log_layers_ecs cargo run --example multi_asset_sync cargo run --example multiple_windows cargo run --example order_independent_transparency ``` ## Additional information This isn't comprehensive, just the most trivial cases. I'll double check my notes and probably follow up with an issue to look into visual guidelines for a few other examples.
218 lines
7.1 KiB
Rust
218 lines
7.1 KiB
Rust
//! Shows how to modify mesh assets after spawning.
|
|
|
|
use bevy::{
|
|
gltf::GltfLoaderSettings,
|
|
input::common_conditions::input_just_pressed,
|
|
prelude::*,
|
|
render::{mesh::VertexAttributeValues, render_asset::RenderAssetUsages},
|
|
};
|
|
|
|
fn main() {
|
|
App::new()
|
|
.add_plugins(DefaultPlugins)
|
|
.add_systems(Startup, (setup, spawn_text))
|
|
.add_systems(
|
|
Update,
|
|
alter_handle.run_if(input_just_pressed(KeyCode::Space)),
|
|
)
|
|
.add_systems(
|
|
Update,
|
|
alter_mesh.run_if(input_just_pressed(KeyCode::Enter)),
|
|
)
|
|
.run();
|
|
}
|
|
|
|
#[derive(Component, Debug)]
|
|
enum Shape {
|
|
Cube,
|
|
Sphere,
|
|
}
|
|
|
|
impl Shape {
|
|
fn get_model_path(&self) -> String {
|
|
match self {
|
|
Shape::Cube => "models/cube/cube.gltf".into(),
|
|
Shape::Sphere => "models/sphere/sphere.gltf".into(),
|
|
}
|
|
}
|
|
|
|
fn set_next_variant(&mut self) {
|
|
*self = match self {
|
|
Shape::Cube => Shape::Sphere,
|
|
Shape::Sphere => Shape::Cube,
|
|
}
|
|
}
|
|
}
|
|
|
|
#[derive(Component, Debug)]
|
|
struct Left;
|
|
|
|
fn setup(
|
|
mut commands: Commands,
|
|
asset_server: Res<AssetServer>,
|
|
mut materials: ResMut<Assets<StandardMaterial>>,
|
|
) {
|
|
let left_shape = Shape::Cube;
|
|
let right_shape = Shape::Cube;
|
|
|
|
// In normal use, you can call `asset_server.load`, however see below for an explanation of
|
|
// `RenderAssetUsages`.
|
|
let left_shape_model = asset_server.load_with_settings(
|
|
GltfAssetLabel::Primitive {
|
|
mesh: 0,
|
|
// This field stores an index to this primitive in its parent mesh. In this case, we
|
|
// want the first one. You might also have seen the syntax:
|
|
//
|
|
// models/cube/cube.gltf#Scene0
|
|
//
|
|
// which accomplishes the same thing.
|
|
primitive: 0,
|
|
}
|
|
.from_asset(left_shape.get_model_path()),
|
|
// `RenderAssetUsages::all()` is already the default, so the line below could be omitted.
|
|
// It's helpful to know it exists, however.
|
|
//
|
|
// `RenderAssetUsages` tell Bevy whether to keep the data around:
|
|
// - for the GPU (`RenderAssetUsages::RENDER_WORLD`),
|
|
// - for the CPU (`RenderAssetUsages::MAIN_WORLD`),
|
|
// - or both.
|
|
// `RENDER_WORLD` is necessary to render the mesh, `MAIN_WORLD` is necessary to inspect
|
|
// and modify the mesh (via `ResMut<Assets<Mesh>>`).
|
|
//
|
|
// Since most games will not need to modify meshes at runtime, many developers opt to pass
|
|
// only `RENDER_WORLD`. This is more memory efficient, as we don't need to keep the mesh in
|
|
// RAM. For this example however, this would not work, as we need to inspect and modify the
|
|
// mesh at runtime.
|
|
|settings: &mut GltfLoaderSettings| settings.load_meshes = RenderAssetUsages::all(),
|
|
);
|
|
|
|
// Here, we rely on the default loader settings to achieve a similar result to the above.
|
|
let right_shape_model = asset_server.load(
|
|
GltfAssetLabel::Primitive {
|
|
mesh: 0,
|
|
primitive: 0,
|
|
}
|
|
.from_asset(right_shape.get_model_path()),
|
|
);
|
|
|
|
// Add a material asset directly to the materials storage
|
|
let material_handle = materials.add(StandardMaterial {
|
|
base_color: Color::srgb(0.6, 0.8, 0.6),
|
|
..default()
|
|
});
|
|
|
|
commands.spawn((
|
|
Left,
|
|
Name::new("Left Shape"),
|
|
Mesh3d(left_shape_model),
|
|
MeshMaterial3d(material_handle.clone()),
|
|
Transform::from_xyz(-3.0, 0.0, 0.0),
|
|
left_shape,
|
|
));
|
|
|
|
commands.spawn((
|
|
Name::new("Right Shape"),
|
|
Mesh3d(right_shape_model),
|
|
MeshMaterial3d(material_handle),
|
|
Transform::from_xyz(3.0, 0.0, 0.0),
|
|
right_shape,
|
|
));
|
|
|
|
commands.spawn((
|
|
Name::new("Point Light"),
|
|
PointLight::default(),
|
|
Transform::from_xyz(4.0, 5.0, 4.0),
|
|
));
|
|
|
|
commands.spawn((
|
|
Name::new("Camera"),
|
|
Camera3d::default(),
|
|
Transform::from_xyz(0.0, 3.0, 20.0).looking_at(Vec3::ZERO, Vec3::Y),
|
|
));
|
|
}
|
|
|
|
fn spawn_text(mut commands: Commands) {
|
|
commands.spawn((
|
|
Name::new("Instructions"),
|
|
Text::new(
|
|
"Space: swap meshes by mutating a Handle<Mesh>\n\
|
|
Return: mutate the mesh itself, changing all copies of it",
|
|
),
|
|
Style {
|
|
position_type: PositionType::Absolute,
|
|
top: Val::Px(12.),
|
|
left: Val::Px(12.),
|
|
..default()
|
|
},
|
|
));
|
|
}
|
|
|
|
fn alter_handle(
|
|
asset_server: Res<AssetServer>,
|
|
mut right_shape: Query<(&mut Mesh3d, &mut Shape), Without<Left>>,
|
|
) {
|
|
// Mesh handles, like other parts of the ECS, can be queried as mutable and modified at
|
|
// runtime. We only spawned one shape without the `Left` marker component.
|
|
let Ok((mut mesh, mut shape)) = right_shape.get_single_mut() else {
|
|
return;
|
|
};
|
|
|
|
// Switch to a new Shape variant
|
|
shape.set_next_variant();
|
|
|
|
// Modify the handle associated with the Shape on the right side. Note that we will only
|
|
// have to load the same path from storage media once: repeated attempts will re-use the
|
|
// asset.
|
|
mesh.0 = asset_server.load(
|
|
GltfAssetLabel::Primitive {
|
|
mesh: 0,
|
|
primitive: 0,
|
|
}
|
|
.from_asset(shape.get_model_path()),
|
|
);
|
|
}
|
|
|
|
fn alter_mesh(
|
|
mut is_mesh_scaled: Local<bool>,
|
|
left_shape: Query<&Mesh3d, With<Left>>,
|
|
mut meshes: ResMut<Assets<Mesh>>,
|
|
) {
|
|
// It's convenient to retrieve the asset handle stored with the shape on the left. However,
|
|
// we could just as easily have retained this in a resource or a dedicated component.
|
|
let Ok(handle) = left_shape.get_single() else {
|
|
return;
|
|
};
|
|
|
|
// Obtain a mutable reference to the Mesh asset.
|
|
let Some(mesh) = meshes.get_mut(handle) else {
|
|
return;
|
|
};
|
|
|
|
// Now we can directly manipulate vertices on the mesh. Here, we're just scaling in and out
|
|
// for demonstration purposes. This will affect all entities currently using the asset.
|
|
//
|
|
// To do this, we need to grab the stored attributes of each vertex. `Float32x3` just describes
|
|
// the format in which the attributes will be read: each position consists of an array of three
|
|
// f32 corresponding to x, y, and z.
|
|
//
|
|
// `ATTRIBUTE_POSITION` is a constant indicating that we want to know where the vertex is
|
|
// located in space (as opposed to which way its normal is facing, vertex color, or other
|
|
// details).
|
|
if let Some(VertexAttributeValues::Float32x3(positions)) =
|
|
mesh.attribute_mut(Mesh::ATTRIBUTE_POSITION)
|
|
{
|
|
// Check a Local value (which only this system can make use of) to determine if we're
|
|
// currently scaled up or not.
|
|
let scale_factor = if *is_mesh_scaled { 0.5 } else { 2.0 };
|
|
|
|
for position in positions.iter_mut() {
|
|
// Apply the scale factor to each of x, y, and z.
|
|
position[0] *= scale_factor;
|
|
position[1] *= scale_factor;
|
|
position[2] *= scale_factor;
|
|
}
|
|
|
|
// Flip the local value to reverse the behaviour next time the key is pressed.
|
|
*is_mesh_scaled = !*is_mesh_scaled;
|
|
}
|
|
}
|