mirror of
https://github.com/bevyengine/bevy
synced 2024-12-22 02:53:07 +00:00
c60dcea231
# Objective - For curves that also include derivatives, make accessing derivative information via the `Curve` API ergonomic: that is, provide access to a curve that also samples derivative information. - Implement this functionality for cubic spline curves provided by `bevy_math`. Ultimately, this is to serve the purpose of doing more geometric operations on curves, like reparametrization by arclength and the construction of moving frames. ## Solution This has several parts, some of which may seem redundant. However, care has been put into this to satisfy the following constraints: - Accessing a `Curve` that samples derivative information should be not just possible but easy and non-error-prone. For example, given a differentiable `Curve<Vec2>`, one should be able to access something like a `Curve<(Vec2, Vec2)>` ergonomically, and not just sample the derivatives piecemeal from point to point. - Derivative access should not step on the toes of ordinary curve usage. In particular, in the above scenario, we want to avoid simply making the same curve both a `Curve<Vec2>` and a `Curve<(Vec2, Vec2)>` because this requires manual disambiguation when the API is used. - Derivative access must work gracefully in both owned and borrowed contexts. ### `HasTangent` We introduce a trait `HasTangent` that provides an associated `Tangent` type for types that have tangent spaces: ```rust pub trait HasTangent { /// The tangent type. type Tangent: VectorSpace; } ``` (Mathematically speaking, it would be more precise to say that these are types that represent spaces which are canonically [parallelized](https://en.wikipedia.org/wiki/Parallelizable_manifold). ) The idea here is that a point moving through a `HasTangent` type may have a derivative valued in the associated `Tangent` type at each time in its journey. We reify this with a `WithDerivative<T>` type that uses `HasTangent` to include derivative information: ```rust pub struct WithDerivative<T> where T: HasTangent, { /// The underlying value. pub value: T, /// The derivative at `value`. pub derivative: T::Tangent, } ``` And we can play the same game with second derivatives as well, since every `VectorSpace` type is `HasTangent` where `Tangent` is itself (we may want to be more restrictive with this in practice, but this holds mathematically). ```rust pub struct WithTwoDerivatives<T> where T: HasTangent, { /// The underlying value. pub value: T, /// The derivative at `value`. pub derivative: T::Tangent, /// The second derivative at `value`. pub second_derivative: <T::Tangent as HasTangent>::Tangent, } ``` In this PR, `HasTangent` is only implemented for `VectorSpace` types, but it would be valuable to have this implementation for types like `Rot2` and `Quat` as well. We could also do it for the isometry types and, potentially, transforms as well. (This is in decreasing order of value in my opinion.) ### `CurveWithDerivative` This is a trait for a `Curve<T>` which allows the construction of a `Curve<WithDerivative<T>>` when derivative information is known intrinsically. It looks like this: ```rust /// Trait for curves that have a well-defined notion of derivative, allowing for /// derivatives to be extracted along with values. pub trait CurveWithDerivative<T> where T: HasTangent, { /// This curve, but with its first derivative included in sampling. fn with_derivative(self) -> impl Curve<WithDerivative<T>>; } ``` The idea here is to provide patterns like this: ```rust let value_and_derivative = my_curve.with_derivative().sample_clamped(t); ``` One of the main points here is that `Curve<WithDerivative<T>>` is useful as an output because it can be used durably. For example, in a dynamic context, something that needs curves with derivatives can store something like a `Box<dyn Curve<WithDerivative<T>>>`. Note that `CurveWithDerivative` is not dyn-compatible. ### `SampleDerivative` Many curves "know" how to sample their derivatives instrinsically, but implementing `CurveWithDerivative` as given would be onerous or require an annoying amount of boilerplate. There are also hurdles to overcome that involve references to curves: for the `Curve` API, the expectation is that curve transformations like `with_derivative` take things by value, with the contract that they can still be used by reference through deref-magic by including `by_ref` in a method chain. These problems are solved simultaneously by a trait `SampleDerivative` which, when implemented, automatically derives `CurveWithDerivative` for a type and all types that dereference to it. It just looks like this: ```rust pub trait SampleDerivative<T>: Curve<T> where T: HasTangent, { fn sample_with_derivative_unchecked(&self, t: f32) -> WithDerivative<T>; // ... other sampling variants as default methods } ``` The point is that the output of `with_derivative` is a `Curve<WithDerivative<T>>` that uses the `SampleDerivative` implementation. On a `SampleDerivative` type, you can also just call `my_curve.sample_with_derivative(t)` instead of something like `my_curve.by_ref().with_derivative().sample(t)`, which is more verbose and less accessible. In practice, `CurveWithDerivative<T>` is actually a "sealed" extension trait of `SampleDerivative<T>`. ## Adaptors `SampleDerivative` has automatic implementations on all curve adaptors except for `FunctionCurve`, `MapCurve`, and `ReparamCurve` (because we do not have a notion of differentiable Rust functions). For example, `CurveReparamCurve` (the reparametrization of a curve by another curve) can compute derivatives using the chain rule in the case both its constituents have them. ## Testing Tests for derivatives on the curve adaptors are included. --- ## Showcase This development allows derivative information to be included with and extracted from curves using the `Curve` API. ```rust let points = [ vec2(-1.0, -20.0), vec2(3.0, 2.0), vec2(5.0, 3.0), vec2(9.0, 8.0), ]; // A cubic spline curve that goes through `points`. let curve = CubicCardinalSpline::new(0.3, points).to_curve().unwrap(); // Calling `with_derivative` causes derivative output to be included in the output of the curve API. let curve_with_derivative = curve.with_derivative(); // A `Curve<f32>` that outputs the speed of the original. let speed_curve = curve_with_derivative.map(|x| x.derivative.norm()); ``` --- ## Questions - ~~Maybe we should seal `WithDerivative` or make it require `SampleDerivative` (i.e. make it unimplementable except through `SampleDerivative`).~~ I decided this is a good idea. - ~~Unclear whether `VectorSpace: HasTangent` blanket implementation is really appropriate. For colors, for example, I'm not sure that the derivative values can really be interpreted as a color. In any case, it should still remain the case that `VectorSpace` types are `HasTangent` and that `HasTangent::Tangent: HasTangent`.~~ I think this is fine. - Infinity bikeshed on names of traits and things. ## Future - Faster implementations of `SampleDerivative` for cubic spline curves. - Improve ergonomics for accessing only derivatives (and other kinds of transformations on derivative curves). - Implement `HasTangent` for: - `Rot2`/`Quat` - `Isometry` types - `Transform`, maybe - Implement derivatives for easing curves. - Marker traits for continuous/differentiable curves. (It's actually unclear to me how much value this has in practice, but we have discussed it in the past.) --------- Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com> |
||
---|---|---|
.. | ||
src | ||
Cargo.toml | ||
clippy.toml | ||
README.md |