mirror of
https://github.com/bevyengine/bevy
synced 2024-12-20 10:03:07 +00:00
e512cb602c
# Objective There are times when we might know the type of a `TypeInfo` ahead of time. Or we may have already checked it one way or another. In such cases, it's a bit cumbersome to have to pattern match every time we want to access the nested info: ```rust if let TypeInfo::List(info) = <Vec<i32>>::type_info() { // ... } else { panic!("expected list info"); } ``` Ideally, there would be a way to simply perform the cast down to `ListInfo` since we already know it will succeed. Or even if we don't, perhaps we just want a cleaner way of exiting a function early (i.e. with the `?` operator). ## Solution Taking a bit from [`mirror-mirror`](https://docs.rs/mirror-mirror/latest/mirror_mirror/struct.TypeDescriptor.html#implementations), `TypeInfo` now has methods for attempting a cast into the variant's info type. ```rust let info = <Vec<i32>>::type_info().as_list().unwrap(); // ... ``` These new conversion methods return a `Result` where the error type is a new `TypeInfoError` enum. A `Result` was chosen as the return type over `Option` because if we do choose to `unwrap` it, the error message will give us some indication of what went wrong. In other words, it can truly replace those instances where we were panicking in the `else` case. ### Open Questions 1. Should the error types instead be a struct? I chose an enum for future-proofing, but right now it only has one error state. Alternatively, we could make it a reflect-wide casting error so it could be used for similar methods on `ReflectRef` and friends. 2. I was going to do it in a separate PR but should I just go ahead and add similar methods to `ReflectRef`, `ReflectMut`, and `ReflectOwned`? 🤔 3. Should we name these `try_as_***` instead of `as_***` since they return a `Result`? ## Testing You can test locally by running: ``` cargo test --package bevy_reflect ``` --- ## Changelog ### Added - `TypeInfoError` enum - `TypeInfo::kind` method - `TypeInfo::as_struct` method - `TypeInfo::as_tuple_struct` method - `TypeInfo::as_tuple` method - `TypeInfo::as_list` method - `TypeInfo::as_array` method - `TypeInfo::as_map` method - `TypeInfo::as_enum` method - `TypeInfo::as_value` method - `VariantInfoError` enum - `VariantInfo::variant_type` method - `VariantInfo::as_unit_variant` method - `VariantInfo::as_tuple_variant` method - `VariantInfo::as_struct_variant` method |
||
---|---|---|
.. | ||
compile_fail | ||
derive | ||
examples | ||
src | ||
Cargo.toml | ||
README.md |
Bevy Reflect
This crate enables you to dynamically interact with Rust types:
- Derive the Reflect traits
- Interact with fields using their names (for named structs) or indices (for tuple structs)
- "Patch" your types with new values
- Look up nested fields using "path strings"
- Iterate over struct fields
- Automatically serialize and deserialize via Serde (without explicit serde impls)
- Trait "reflection"
Features
Derive the Reflect traits
// this will automatically implement the Reflect trait and the Struct trait (because the type is a struct)
#[derive(Reflect)]
struct Foo {
a: u32,
b: Bar,
c: Vec<i32>,
d: Vec<Baz>,
}
// this will automatically implement the Reflect trait and the TupleStruct trait (because the type is a tuple struct)
#[derive(Reflect)]
struct Bar(String);
#[derive(Reflect)]
struct Baz {
value: f32,
}
// We will use this value to illustrate `bevy_reflect` features
let mut foo = Foo {
a: 1,
b: Bar("hello".to_string()),
c: vec![1, 2],
d: vec![Baz { value: 3.14 }],
};
Interact with fields using their names
assert_eq!(*foo.get_field::<u32>("a").unwrap(), 1);
*foo.get_field_mut::<u32>("a").unwrap() = 2;
assert_eq!(foo.a, 2);
"Patch" your types with new values
let mut dynamic_struct = DynamicStruct::default();
dynamic_struct.insert("a", 42u32);
dynamic_struct.insert("c", vec![3, 4, 5]);
foo.apply(&dynamic_struct);
assert_eq!(foo.a, 42);
assert_eq!(foo.c, vec![3, 4, 5]);
Look up nested fields using "path strings"
let value = *foo.get_path::<f32>("d[0].value").unwrap();
assert_eq!(value, 3.14);
Iterate over struct fields
for (i, value: &Reflect) in foo.iter_fields().enumerate() {
let field_name = foo.name_at(i).unwrap();
if let Some(value) = value.downcast_ref::<u32>() {
println!("{} is a u32 with the value: {}", field_name, *value);
}
}
Automatically serialize and deserialize via Serde (without explicit serde impls)
let mut registry = TypeRegistry::default();
registry.register::<u32>();
registry.register::<i32>();
registry.register::<f32>();
registry.register::<String>();
registry.register::<Bar>();
registry.register::<Baz>();
let serializer = ReflectSerializer::new(&foo, ®istry);
let serialized = ron::ser::to_string_pretty(&serializer, ron::ser::PrettyConfig::default()).unwrap();
let mut deserializer = ron::de::Deserializer::from_str(&serialized).unwrap();
let reflect_deserializer = ReflectDeserializer::new(®istry);
let value = reflect_deserializer.deserialize(&mut deserializer).unwrap();
let dynamic_struct = value.take::<DynamicStruct>().unwrap();
assert!(foo.reflect_partial_eq(&dynamic_struct).unwrap());
Trait "reflection"
Call a trait on a given &dyn Reflect
reference without knowing the underlying type!
#[derive(Reflect)]
#[reflect(DoThing)]
struct MyType {
value: String,
}
impl DoThing for MyType {
fn do_thing(&self) -> String {
format!("{} World!", self.value)
}
}
#[reflect_trait]
pub trait DoThing {
fn do_thing(&self) -> String;
}
// First, lets box our type as a Box<dyn Reflect>
let reflect_value: Box<dyn Reflect> = Box::new(MyType {
value: "Hello".to_string(),
});
// This means we no longer have direct access to MyType or its methods. We can only call Reflect methods on reflect_value.
// What if we want to call `do_thing` on our type? We could downcast using reflect_value.downcast_ref::<MyType>(), but what if we
// don't know the type at compile time?
// Normally in rust we would be out of luck at this point. Lets use our new reflection powers to do something cool!
let mut type_registry = TypeRegistry::default();
type_registry.register::<MyType>();
// The #[reflect] attribute we put on our DoThing trait generated a new `ReflectDoThing` struct, which implements TypeData.
// This was added to MyType's TypeRegistration.
let reflect_do_thing = type_registry
.get_type_data::<ReflectDoThing>(reflect_value.type_id())
.unwrap();
// We can use this generated type to convert our `&dyn Reflect` reference to a `&dyn DoThing` reference
let my_trait: &dyn DoThing = reflect_do_thing.get(&*reflect_value).unwrap();
// Which means we can now call do_thing(). Magic!
println!("{}", my_trait.do_thing());
// This works because the #[reflect(MyTrait)] we put on MyType informed the Reflect derive to insert a new instance
// of ReflectDoThing into MyType's registration. The instance knows how to cast &dyn Reflect to &dyn DoThing, because it
// knows that &dyn Reflect should first be downcasted to &MyType, which can then be safely casted to &dyn DoThing
Why make this?
The whole point of Rust is static safety! Why build something that makes it easy to throw it all away?
- Some problems are inherently dynamic (scripting, some types of serialization / deserialization)
- Sometimes the dynamic way is easier
- Sometimes the dynamic way puts less burden on your users to derive a bunch of traits (this was a big motivator for the Bevy project)