bevy/crates/bevy_ecs/src/storage/blob_vec.rs
Jakob Hellermann 60584139de untyped APIs for components and resources (#4447)
# Objective

Even if bevy itself does not provide any builtin scripting or modding APIs, it should have the foundations for building them yourself.
For that it should be enough to have APIs that are not tied to the actual rust types with generics, but rather accept `ComponentId`s and `bevy_ptr` ptrs.

## Solution

Add the following APIs to bevy
```rust
fn EntityRef::get_by_id(ComponentId) -> Option<Ptr<'w>>;
fn EntityMut::get_by_id(ComponentId) -> Option<Ptr<'_>>;
fn EntityMut::get_mut_by_id(ComponentId) -> Option<MutUntyped<'_>>;

fn World::get_resource_by_id(ComponentId) -> Option<Ptr<'_>>;
fn World::get_resource_mut_by_id(ComponentId) -> Option<MutUntyped<'_>>;

// Safety: `value` must point to a valid value of the component
unsafe fn World::insert_resource_by_id(ComponentId, value: OwningPtr);

fn ComponentDescriptor::new_with_layout(..) -> Self;
fn World::init_component_with_descriptor(ComponentDescriptor) -> ComponentId;
```

~~This PR would definitely benefit from #3001 (lifetime'd pointers) to make sure that the lifetimes of the pointers are valid and the my-move pointer in `insert_resource_by_id` could be an `OwningPtr`, but that can be adapter later if/when #3001 is merged.~~

### Not in this PR
- inserting components on entities (this is very tied to types with bundles and the `BundleInserter`)
- an untyped version of a query (needs good API design, has a large implementation complexity, can be done in a third-party crate)

Co-authored-by: Jakob Hellermann <hellermann@sipgate.de>
2022-05-30 15:32:47 +00:00

486 lines
17 KiB
Rust

use std::{
alloc::{handle_alloc_error, Layout},
cell::UnsafeCell,
ptr::NonNull,
};
use bevy_ptr::{OwningPtr, Ptr, PtrMut};
/// A flat, type-erased data storage type
///
/// Used to densely store homogeneous ECS data.
pub struct BlobVec {
item_layout: Layout,
capacity: usize,
/// Number of elements, not bytes
len: usize,
data: NonNull<u8>,
swap_scratch: NonNull<u8>,
// None if the underlying type doesn't need to be dropped
drop: Option<unsafe fn(OwningPtr<'_>)>,
}
// We want to ignore the `drop` field in our `Debug` impl
impl std::fmt::Debug for BlobVec {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
f.debug_struct("BlobVec")
.field("item_layout", &self.item_layout)
.field("capacity", &self.capacity)
.field("len", &self.len)
.field("data", &self.data)
.field("swap_scratch", &self.swap_scratch)
.finish()
}
}
impl BlobVec {
/// # Safety
///
/// `drop` should be safe to call with an [`OwningPtr`] pointing to any item that's been pushed into this [`BlobVec`].
///
/// If `drop` is `None`, the items will be leaked. This should generally be set as None based on [`needs_drop`].
///
/// [`needs_drop`]: core::mem::needs_drop
pub unsafe fn new(
item_layout: Layout,
drop: Option<unsafe fn(OwningPtr<'_>)>,
capacity: usize,
) -> BlobVec {
if item_layout.size() == 0 {
BlobVec {
swap_scratch: NonNull::dangling(),
data: NonNull::dangling(),
capacity: usize::MAX,
len: 0,
item_layout,
drop,
}
} else {
let swap_scratch = NonNull::new(std::alloc::alloc(item_layout))
.unwrap_or_else(|| std::alloc::handle_alloc_error(item_layout));
let mut blob_vec = BlobVec {
swap_scratch,
data: NonNull::dangling(),
capacity: 0,
len: 0,
item_layout,
drop,
};
blob_vec.reserve_exact(capacity);
blob_vec
}
}
#[inline]
pub fn len(&self) -> usize {
self.len
}
#[inline]
pub fn is_empty(&self) -> bool {
self.len == 0
}
#[inline]
pub fn capacity(&self) -> usize {
self.capacity
}
#[inline]
pub fn layout(&self) -> Layout {
self.item_layout
}
pub fn reserve_exact(&mut self, additional: usize) {
let available_space = self.capacity - self.len;
if available_space < additional {
self.grow_exact(additional - available_space);
}
}
// FIXME: this should probably be an unsafe fn as it shouldn't be called if the layout
// is for a ZST
fn grow_exact(&mut self, increment: usize) {
debug_assert!(self.item_layout.size() != 0);
let new_capacity = self.capacity + increment;
let new_layout =
array_layout(&self.item_layout, new_capacity).expect("array layout should be valid");
unsafe {
let new_data = if self.capacity == 0 {
std::alloc::alloc(new_layout)
} else {
std::alloc::realloc(
self.get_ptr_mut().as_ptr(),
array_layout(&self.item_layout, self.capacity)
.expect("array layout should be valid"),
new_layout.size(),
)
};
self.data = NonNull::new(new_data).unwrap_or_else(|| handle_alloc_error(new_layout));
}
self.capacity = new_capacity;
}
/// # Safety
/// - index must be in bounds
/// - the memory in the [`BlobVec`] starting at index `index`, of a size matching this [`BlobVec`]'s
/// `item_layout`, must have been previously allocated.
#[inline]
pub unsafe fn initialize_unchecked(&mut self, index: usize, value: OwningPtr<'_>) {
debug_assert!(index < self.len());
let ptr = self.get_unchecked_mut(index);
std::ptr::copy_nonoverlapping::<u8>(value.as_ptr(), ptr.as_ptr(), self.item_layout.size());
}
/// # Safety
/// - index must be in-bounds
/// - the memory in the [`BlobVec`] starting at index `index`, of a size matching this
/// [`BlobVec`]'s `item_layout`, must have been previously initialized with an item matching
/// this [`BlobVec`]'s `item_layout`
/// - the memory at `*value` must also be previously initialized with an item matching this
/// [`BlobVec`]'s `item_layout`
pub unsafe fn replace_unchecked(&mut self, index: usize, value: OwningPtr<'_>) {
debug_assert!(index < self.len());
// If `drop` panics, then when the collection is dropped during stack unwinding, the
// collection's `Drop` impl will call `drop` again for the old value (which is still stored
// in the collection), so we get a double drop. To prevent that, we set len to 0 until we're
// done.
let old_len = self.len;
let ptr = self.get_unchecked_mut(index).promote().as_ptr();
self.len = 0;
// Drop the old value, then write back, justifying the promotion
if let Some(drop) = self.drop {
(drop)(OwningPtr::new(NonNull::new_unchecked(ptr)));
}
std::ptr::copy_nonoverlapping::<u8>(value.as_ptr(), ptr, self.item_layout.size());
self.len = old_len;
}
/// Pushes a value to the [`BlobVec`].
///
/// # Safety
/// `value` must be valid to add to this [`BlobVec`]
#[inline]
pub unsafe fn push(&mut self, value: OwningPtr<'_>) {
self.reserve_exact(1);
let index = self.len;
self.len += 1;
self.initialize_unchecked(index, value);
}
/// # Safety
/// `len` must be <= `capacity`. if length is decreased, "out of bounds" items must be dropped.
/// Newly added items must be immediately populated with valid values and length must be
/// increased. For better unwind safety, call [`BlobVec::set_len`] _after_ populating a new
/// value.
pub unsafe fn set_len(&mut self, len: usize) {
debug_assert!(len <= self.capacity());
self.len = len;
}
/// Performs a "swap remove" at the given `index`, which removes the item at `index` and moves
/// the last item in the [`BlobVec`] to `index` (if `index` is not the last item). It is the
/// caller's responsibility to drop the returned pointer, if that is desirable.
///
/// # Safety
/// It is the caller's responsibility to ensure that `index` is < `self.len()`
#[inline]
#[must_use = "The returned pointer should be used to dropped the removed element"]
pub unsafe fn swap_remove_and_forget_unchecked(&mut self, index: usize) -> OwningPtr<'_> {
// FIXME: This should probably just use `core::ptr::swap` and return an `OwningPtr`
// into the underlying `BlobVec` allocation, and remove swap_scratch
debug_assert!(index < self.len());
let last = self.len - 1;
let swap_scratch = self.swap_scratch.as_ptr();
std::ptr::copy_nonoverlapping::<u8>(
self.get_unchecked_mut(index).as_ptr(),
swap_scratch,
self.item_layout.size(),
);
std::ptr::copy::<u8>(
self.get_unchecked_mut(last).as_ptr(),
self.get_unchecked_mut(index).as_ptr(),
self.item_layout.size(),
);
self.len -= 1;
OwningPtr::new(self.swap_scratch)
}
/// # Safety
/// It is the caller's responsibility to ensure that `index` is < self.len()
#[inline]
pub unsafe fn swap_remove_and_drop_unchecked(&mut self, index: usize) {
debug_assert!(index < self.len());
let drop = self.drop;
let value = self.swap_remove_and_forget_unchecked(index);
if let Some(drop) = drop {
(drop)(value);
}
}
/// # Safety
/// It is the caller's responsibility to ensure that `index` is < self.len()
#[inline]
pub unsafe fn get_unchecked(&self, index: usize) -> Ptr<'_> {
debug_assert!(index < self.len());
self.get_ptr().byte_add(index * self.item_layout.size())
}
/// # Safety
/// It is the caller's responsibility to ensure that `index` is < self.len()
#[inline]
pub unsafe fn get_unchecked_mut(&mut self, index: usize) -> PtrMut<'_> {
debug_assert!(index < self.len());
let layout_size = self.item_layout.size();
self.get_ptr_mut().byte_add(index * layout_size)
}
/// Gets a [`Ptr`] to the start of the vec
#[inline]
pub fn get_ptr(&self) -> Ptr<'_> {
// SAFE: the inner data will remain valid for as long as 'self.
unsafe { Ptr::new(self.data) }
}
/// Gets a [`PtrMut`] to the start of the vec
#[inline]
pub fn get_ptr_mut(&mut self) -> PtrMut<'_> {
// SAFE: the inner data will remain valid for as long as 'self.
unsafe { PtrMut::new(self.data) }
}
/// Get a reference to the entire [`BlobVec`] as if it were an array with elements of type `T`
///
/// # Safety
/// The type `T` must be the type of the items in this [`BlobVec`].
pub unsafe fn get_slice<T>(&self) -> &[UnsafeCell<T>] {
// SAFE: the inner data will remain valid for as long as 'self.
std::slice::from_raw_parts(self.data.as_ptr() as *const UnsafeCell<T>, self.len)
}
pub fn clear(&mut self) {
let len = self.len;
// We set len to 0 _before_ dropping elements for unwind safety. This ensures we don't
// accidentally drop elements twice in the event of a drop impl panicking.
self.len = 0;
if let Some(drop) = self.drop {
let layout_size = self.item_layout.size();
for i in 0..len {
unsafe {
// NOTE: this doesn't use self.get_unchecked(i) because the debug_assert on index
// will panic here due to self.len being set to 0
let ptr = self.get_ptr_mut().byte_add(i * layout_size).promote();
(drop)(ptr);
}
}
}
}
}
impl Drop for BlobVec {
fn drop(&mut self) {
self.clear();
let array_layout =
array_layout(&self.item_layout, self.capacity).expect("array layout should be valid");
if array_layout.size() > 0 {
unsafe {
std::alloc::dealloc(self.get_ptr_mut().as_ptr(), array_layout);
std::alloc::dealloc(self.swap_scratch.as_ptr(), self.item_layout);
}
}
}
}
/// From <https://doc.rust-lang.org/beta/src/core/alloc/layout.rs.html>
fn array_layout(layout: &Layout, n: usize) -> Option<Layout> {
let (array_layout, offset) = repeat_layout(layout, n)?;
debug_assert_eq!(layout.size(), offset);
Some(array_layout)
}
// TODO: replace with `Layout::repeat` if/when it stabilizes
/// From <https://doc.rust-lang.org/beta/src/core/alloc/layout.rs.html>
fn repeat_layout(layout: &Layout, n: usize) -> Option<(Layout, usize)> {
// This cannot overflow. Quoting from the invariant of Layout:
// > `size`, when rounded up to the nearest multiple of `align`,
// > must not overflow (i.e., the rounded value must be less than
// > `usize::MAX`)
let padded_size = layout.size() + padding_needed_for(layout, layout.align());
let alloc_size = padded_size.checked_mul(n)?;
// SAFETY: self.align is already known to be valid and alloc_size has been
// padded already.
unsafe {
Some((
Layout::from_size_align_unchecked(alloc_size, layout.align()),
padded_size,
))
}
}
/// From <https://doc.rust-lang.org/beta/src/core/alloc/layout.rs.html>
const fn padding_needed_for(layout: &Layout, align: usize) -> usize {
let len = layout.size();
// Rounded up value is:
// len_rounded_up = (len + align - 1) & !(align - 1);
// and then we return the padding difference: `len_rounded_up - len`.
//
// We use modular arithmetic throughout:
//
// 1. align is guaranteed to be > 0, so align - 1 is always
// valid.
//
// 2. `len + align - 1` can overflow by at most `align - 1`,
// so the &-mask with `!(align - 1)` will ensure that in the
// case of overflow, `len_rounded_up` will itself be 0.
// Thus the returned padding, when added to `len`, yields 0,
// which trivially satisfies the alignment `align`.
//
// (Of course, attempts to allocate blocks of memory whose
// size and padding overflow in the above manner should cause
// the allocator to yield an error anyway.)
let len_rounded_up = len.wrapping_add(align).wrapping_sub(1) & !align.wrapping_sub(1);
len_rounded_up.wrapping_sub(len)
}
#[cfg(test)]
mod tests {
use crate::ptr::OwningPtr;
use super::BlobVec;
use std::{alloc::Layout, cell::RefCell, rc::Rc};
// SAFETY: The pointer points to a valid value of type `T` and it is safe to drop this value.
unsafe fn drop_ptr<T>(x: OwningPtr<'_>) {
x.drop_as::<T>()
}
/// # Safety
///
/// `blob_vec` must have a layout that matches `Layout::new::<T>()`
unsafe fn push<T>(blob_vec: &mut BlobVec, value: T) {
OwningPtr::make(value, |ptr| {
blob_vec.push(ptr);
});
}
/// # Safety
///
/// `blob_vec` must have a layout that matches `Layout::new::<T>()`
unsafe fn swap_remove<T>(blob_vec: &mut BlobVec, index: usize) -> T {
assert!(index < blob_vec.len());
let value = blob_vec.swap_remove_and_forget_unchecked(index);
value.read::<T>()
}
/// # Safety
///
/// `blob_vec` must have a layout that matches `Layout::new::<T>()`, it most store a valid `T`
/// value at the given `index`
unsafe fn get_mut<T>(blob_vec: &mut BlobVec, index: usize) -> &mut T {
assert!(index < blob_vec.len());
blob_vec.get_unchecked_mut(index).deref_mut::<T>()
}
#[test]
fn resize_test() {
let item_layout = Layout::new::<usize>();
// usize doesn't need dropping
let mut blob_vec = unsafe { BlobVec::new(item_layout, None, 64) };
unsafe {
for i in 0..1_000 {
push(&mut blob_vec, i as usize);
}
}
assert_eq!(blob_vec.len(), 1_000);
assert_eq!(blob_vec.capacity(), 1_000);
}
#[derive(Debug, Eq, PartialEq, Clone)]
struct Foo {
a: u8,
b: String,
drop_counter: Rc<RefCell<usize>>,
}
impl Drop for Foo {
fn drop(&mut self) {
*self.drop_counter.borrow_mut() += 1;
}
}
#[test]
fn blob_vec() {
let drop_counter = Rc::new(RefCell::new(0));
{
let item_layout = Layout::new::<Foo>();
let drop = drop_ptr::<Foo>;
let mut blob_vec = unsafe { BlobVec::new(item_layout, Some(drop), 2) };
assert_eq!(blob_vec.capacity(), 2);
unsafe {
let foo1 = Foo {
a: 42,
b: "abc".to_string(),
drop_counter: drop_counter.clone(),
};
push(&mut blob_vec, foo1.clone());
assert_eq!(blob_vec.len(), 1);
assert_eq!(get_mut::<Foo>(&mut blob_vec, 0), &foo1);
let mut foo2 = Foo {
a: 7,
b: "xyz".to_string(),
drop_counter: drop_counter.clone(),
};
push::<Foo>(&mut blob_vec, foo2.clone());
assert_eq!(blob_vec.len(), 2);
assert_eq!(blob_vec.capacity(), 2);
assert_eq!(get_mut::<Foo>(&mut blob_vec, 0), &foo1);
assert_eq!(get_mut::<Foo>(&mut blob_vec, 1), &foo2);
get_mut::<Foo>(&mut blob_vec, 1).a += 1;
assert_eq!(get_mut::<Foo>(&mut blob_vec, 1).a, 8);
let foo3 = Foo {
a: 16,
b: "123".to_string(),
drop_counter: drop_counter.clone(),
};
push(&mut blob_vec, foo3.clone());
assert_eq!(blob_vec.len(), 3);
assert_eq!(blob_vec.capacity(), 3);
let last_index = blob_vec.len() - 1;
let value = swap_remove::<Foo>(&mut blob_vec, last_index);
assert_eq!(foo3, value);
assert_eq!(blob_vec.len(), 2);
assert_eq!(blob_vec.capacity(), 3);
let value = swap_remove::<Foo>(&mut blob_vec, 0);
assert_eq!(foo1, value);
assert_eq!(blob_vec.len(), 1);
assert_eq!(blob_vec.capacity(), 3);
foo2.a = 8;
assert_eq!(get_mut::<Foo>(&mut blob_vec, 0), &foo2);
}
}
assert_eq!(*drop_counter.borrow(), 6);
}
#[test]
fn blob_vec_drop_empty_capacity() {
let item_layout = Layout::new::<Foo>();
let drop = drop_ptr::<Foo>;
let _ = unsafe { BlobVec::new(item_layout, Some(drop), 0) };
}
}