bevy/examples/games/breakout.rs
CatThingy 89cbc78d3d
Require #[derive(Event)] on all Events (#7086)
# Objective

Be consistent with `Resource`s and `Components` and have `Event` types
be more self-documenting.
Although not susceptible to accidentally using a function instead of a
value due to `Event`s only being initialized by their type, much of the
same reasoning for removing the blanket impl on `Resource` also applies
here.

* Not immediately obvious if a type is intended to be an event
* Prevent invisible conflicts if the same third-party or primitive types
are used as events
* Allows for further extensions (e.g. opt-in warning for missed events)

## Solution

Remove the blanket impl for the `Event` trait. Add a derive macro for
it.

---

## Changelog

- `Event` is no longer implemented for all applicable types. Add the
`#[derive(Event)]` macro for events.

## Migration Guide

* Add the `#[derive(Event)]` macro for events. Third-party types used as
events should be wrapped in a newtype.
2023-06-06 14:44:32 +00:00

417 lines
14 KiB
Rust

//! A simplified implementation of the classic game "Breakout".
use bevy::{
prelude::*,
sprite::collide_aabb::{collide, Collision},
sprite::MaterialMesh2dBundle,
};
// These constants are defined in `Transform` units.
// Using the default 2D camera they correspond 1:1 with screen pixels.
const PADDLE_SIZE: Vec3 = Vec3::new(120.0, 20.0, 0.0);
const GAP_BETWEEN_PADDLE_AND_FLOOR: f32 = 60.0;
const PADDLE_SPEED: f32 = 500.0;
// How close can the paddle get to the wall
const PADDLE_PADDING: f32 = 10.0;
// We set the z-value of the ball to 1 so it renders on top in the case of overlapping sprites.
const BALL_STARTING_POSITION: Vec3 = Vec3::new(0.0, -50.0, 1.0);
const BALL_SIZE: Vec3 = Vec3::new(30.0, 30.0, 0.0);
const BALL_SPEED: f32 = 400.0;
const INITIAL_BALL_DIRECTION: Vec2 = Vec2::new(0.5, -0.5);
const WALL_THICKNESS: f32 = 10.0;
// x coordinates
const LEFT_WALL: f32 = -450.;
const RIGHT_WALL: f32 = 450.;
// y coordinates
const BOTTOM_WALL: f32 = -300.;
const TOP_WALL: f32 = 300.;
const BRICK_SIZE: Vec2 = Vec2::new(100., 30.);
// These values are exact
const GAP_BETWEEN_PADDLE_AND_BRICKS: f32 = 270.0;
const GAP_BETWEEN_BRICKS: f32 = 5.0;
// These values are lower bounds, as the number of bricks is computed
const GAP_BETWEEN_BRICKS_AND_CEILING: f32 = 20.0;
const GAP_BETWEEN_BRICKS_AND_SIDES: f32 = 20.0;
const SCOREBOARD_FONT_SIZE: f32 = 40.0;
const SCOREBOARD_TEXT_PADDING: Val = Val::Px(5.0);
const BACKGROUND_COLOR: Color = Color::rgb(0.9, 0.9, 0.9);
const PADDLE_COLOR: Color = Color::rgb(0.3, 0.3, 0.7);
const BALL_COLOR: Color = Color::rgb(1.0, 0.5, 0.5);
const BRICK_COLOR: Color = Color::rgb(0.5, 0.5, 1.0);
const WALL_COLOR: Color = Color::rgb(0.8, 0.8, 0.8);
const TEXT_COLOR: Color = Color::rgb(0.5, 0.5, 1.0);
const SCORE_COLOR: Color = Color::rgb(1.0, 0.5, 0.5);
fn main() {
App::new()
.add_plugins(DefaultPlugins)
.insert_resource(Scoreboard { score: 0 })
.insert_resource(ClearColor(BACKGROUND_COLOR))
.add_event::<CollisionEvent>()
// Configure how frequently our gameplay systems are run
.insert_resource(FixedTime::new_from_secs(1.0 / 60.0))
.add_systems(Startup, setup)
// Add our gameplay simulation systems to the fixed timestep schedule
.add_systems(
FixedUpdate,
(
check_for_collisions,
apply_velocity.before(check_for_collisions),
move_paddle
.before(check_for_collisions)
.after(apply_velocity),
play_collision_sound.after(check_for_collisions),
),
)
.add_systems(Update, (update_scoreboard, bevy::window::close_on_esc))
.run();
}
#[derive(Component)]
struct Paddle;
#[derive(Component)]
struct Ball;
#[derive(Component, Deref, DerefMut)]
struct Velocity(Vec2);
#[derive(Component)]
struct Collider;
#[derive(Event, Default)]
struct CollisionEvent;
#[derive(Component)]
struct Brick;
#[derive(Resource)]
struct CollisionSound(Handle<AudioSource>);
// This bundle is a collection of the components that define a "wall" in our game
#[derive(Bundle)]
struct WallBundle {
// You can nest bundles inside of other bundles like this
// Allowing you to compose their functionality
sprite_bundle: SpriteBundle,
collider: Collider,
}
/// Which side of the arena is this wall located on?
enum WallLocation {
Left,
Right,
Bottom,
Top,
}
impl WallLocation {
fn position(&self) -> Vec2 {
match self {
WallLocation::Left => Vec2::new(LEFT_WALL, 0.),
WallLocation::Right => Vec2::new(RIGHT_WALL, 0.),
WallLocation::Bottom => Vec2::new(0., BOTTOM_WALL),
WallLocation::Top => Vec2::new(0., TOP_WALL),
}
}
fn size(&self) -> Vec2 {
let arena_height = TOP_WALL - BOTTOM_WALL;
let arena_width = RIGHT_WALL - LEFT_WALL;
// Make sure we haven't messed up our constants
assert!(arena_height > 0.0);
assert!(arena_width > 0.0);
match self {
WallLocation::Left | WallLocation::Right => {
Vec2::new(WALL_THICKNESS, arena_height + WALL_THICKNESS)
}
WallLocation::Bottom | WallLocation::Top => {
Vec2::new(arena_width + WALL_THICKNESS, WALL_THICKNESS)
}
}
}
}
impl WallBundle {
// This "builder method" allows us to reuse logic across our wall entities,
// making our code easier to read and less prone to bugs when we change the logic
fn new(location: WallLocation) -> WallBundle {
WallBundle {
sprite_bundle: SpriteBundle {
transform: Transform {
// We need to convert our Vec2 into a Vec3, by giving it a z-coordinate
// This is used to determine the order of our sprites
translation: location.position().extend(0.0),
// The z-scale of 2D objects must always be 1.0,
// or their ordering will be affected in surprising ways.
// See https://github.com/bevyengine/bevy/issues/4149
scale: location.size().extend(1.0),
..default()
},
sprite: Sprite {
color: WALL_COLOR,
..default()
},
..default()
},
collider: Collider,
}
}
}
// This resource tracks the game's score
#[derive(Resource)]
struct Scoreboard {
score: usize,
}
// Add the game's entities to our world
fn setup(
mut commands: Commands,
mut meshes: ResMut<Assets<Mesh>>,
mut materials: ResMut<Assets<ColorMaterial>>,
asset_server: Res<AssetServer>,
) {
// Camera
commands.spawn(Camera2dBundle::default());
// Sound
let ball_collision_sound = asset_server.load("sounds/breakout_collision.ogg");
commands.insert_resource(CollisionSound(ball_collision_sound));
// Paddle
let paddle_y = BOTTOM_WALL + GAP_BETWEEN_PADDLE_AND_FLOOR;
commands.spawn((
SpriteBundle {
transform: Transform {
translation: Vec3::new(0.0, paddle_y, 0.0),
scale: PADDLE_SIZE,
..default()
},
sprite: Sprite {
color: PADDLE_COLOR,
..default()
},
..default()
},
Paddle,
Collider,
));
// Ball
commands.spawn((
MaterialMesh2dBundle {
mesh: meshes.add(shape::Circle::default().into()).into(),
material: materials.add(ColorMaterial::from(BALL_COLOR)),
transform: Transform::from_translation(BALL_STARTING_POSITION).with_scale(BALL_SIZE),
..default()
},
Ball,
Velocity(INITIAL_BALL_DIRECTION.normalize() * BALL_SPEED),
));
// Scoreboard
commands.spawn(
TextBundle::from_sections([
TextSection::new(
"Score: ",
TextStyle {
font_size: SCOREBOARD_FONT_SIZE,
color: TEXT_COLOR,
..default()
},
),
TextSection::from_style(TextStyle {
font_size: SCOREBOARD_FONT_SIZE,
color: SCORE_COLOR,
..default()
}),
])
.with_style(Style {
position_type: PositionType::Absolute,
top: SCOREBOARD_TEXT_PADDING,
left: SCOREBOARD_TEXT_PADDING,
..default()
}),
);
// Walls
commands.spawn(WallBundle::new(WallLocation::Left));
commands.spawn(WallBundle::new(WallLocation::Right));
commands.spawn(WallBundle::new(WallLocation::Bottom));
commands.spawn(WallBundle::new(WallLocation::Top));
// Bricks
// Negative scales result in flipped sprites / meshes,
// which is definitely not what we want here
assert!(BRICK_SIZE.x > 0.0);
assert!(BRICK_SIZE.y > 0.0);
let total_width_of_bricks = (RIGHT_WALL - LEFT_WALL) - 2. * GAP_BETWEEN_BRICKS_AND_SIDES;
let bottom_edge_of_bricks = paddle_y + GAP_BETWEEN_PADDLE_AND_BRICKS;
let total_height_of_bricks = TOP_WALL - bottom_edge_of_bricks - GAP_BETWEEN_BRICKS_AND_CEILING;
assert!(total_width_of_bricks > 0.0);
assert!(total_height_of_bricks > 0.0);
// Given the space available, compute how many rows and columns of bricks we can fit
let n_columns = (total_width_of_bricks / (BRICK_SIZE.x + GAP_BETWEEN_BRICKS)).floor() as usize;
let n_rows = (total_height_of_bricks / (BRICK_SIZE.y + GAP_BETWEEN_BRICKS)).floor() as usize;
let n_vertical_gaps = n_columns - 1;
// Because we need to round the number of columns,
// the space on the top and sides of the bricks only captures a lower bound, not an exact value
let center_of_bricks = (LEFT_WALL + RIGHT_WALL) / 2.0;
let left_edge_of_bricks = center_of_bricks
// Space taken up by the bricks
- (n_columns as f32 / 2.0 * BRICK_SIZE.x)
// Space taken up by the gaps
- n_vertical_gaps as f32 / 2.0 * GAP_BETWEEN_BRICKS;
// In Bevy, the `translation` of an entity describes the center point,
// not its bottom-left corner
let offset_x = left_edge_of_bricks + BRICK_SIZE.x / 2.;
let offset_y = bottom_edge_of_bricks + BRICK_SIZE.y / 2.;
for row in 0..n_rows {
for column in 0..n_columns {
let brick_position = Vec2::new(
offset_x + column as f32 * (BRICK_SIZE.x + GAP_BETWEEN_BRICKS),
offset_y + row as f32 * (BRICK_SIZE.y + GAP_BETWEEN_BRICKS),
);
// brick
commands.spawn((
SpriteBundle {
sprite: Sprite {
color: BRICK_COLOR,
..default()
},
transform: Transform {
translation: brick_position.extend(0.0),
scale: Vec3::new(BRICK_SIZE.x, BRICK_SIZE.y, 1.0),
..default()
},
..default()
},
Brick,
Collider,
));
}
}
}
fn move_paddle(
keyboard_input: Res<Input<KeyCode>>,
mut query: Query<&mut Transform, With<Paddle>>,
time_step: Res<FixedTime>,
) {
let mut paddle_transform = query.single_mut();
let mut direction = 0.0;
if keyboard_input.pressed(KeyCode::Left) {
direction -= 1.0;
}
if keyboard_input.pressed(KeyCode::Right) {
direction += 1.0;
}
// Calculate the new horizontal paddle position based on player input
let new_paddle_position =
paddle_transform.translation.x + direction * PADDLE_SPEED * time_step.period.as_secs_f32();
// Update the paddle position,
// making sure it doesn't cause the paddle to leave the arena
let left_bound = LEFT_WALL + WALL_THICKNESS / 2.0 + PADDLE_SIZE.x / 2.0 + PADDLE_PADDING;
let right_bound = RIGHT_WALL - WALL_THICKNESS / 2.0 - PADDLE_SIZE.x / 2.0 - PADDLE_PADDING;
paddle_transform.translation.x = new_paddle_position.clamp(left_bound, right_bound);
}
fn apply_velocity(mut query: Query<(&mut Transform, &Velocity)>, time_step: Res<FixedTime>) {
for (mut transform, velocity) in &mut query {
transform.translation.x += velocity.x * time_step.period.as_secs_f32();
transform.translation.y += velocity.y * time_step.period.as_secs_f32();
}
}
fn update_scoreboard(scoreboard: Res<Scoreboard>, mut query: Query<&mut Text>) {
let mut text = query.single_mut();
text.sections[1].value = scoreboard.score.to_string();
}
fn check_for_collisions(
mut commands: Commands,
mut scoreboard: ResMut<Scoreboard>,
mut ball_query: Query<(&mut Velocity, &Transform), With<Ball>>,
collider_query: Query<(Entity, &Transform, Option<&Brick>), With<Collider>>,
mut collision_events: EventWriter<CollisionEvent>,
) {
let (mut ball_velocity, ball_transform) = ball_query.single_mut();
let ball_size = ball_transform.scale.truncate();
// check collision with walls
for (collider_entity, transform, maybe_brick) in &collider_query {
let collision = collide(
ball_transform.translation,
ball_size,
transform.translation,
transform.scale.truncate(),
);
if let Some(collision) = collision {
// Sends a collision event so that other systems can react to the collision
collision_events.send_default();
// Bricks should be despawned and increment the scoreboard on collision
if maybe_brick.is_some() {
scoreboard.score += 1;
commands.entity(collider_entity).despawn();
}
// reflect the ball when it collides
let mut reflect_x = false;
let mut reflect_y = false;
// only reflect if the ball's velocity is going in the opposite direction of the
// collision
match collision {
Collision::Left => reflect_x = ball_velocity.x > 0.0,
Collision::Right => reflect_x = ball_velocity.x < 0.0,
Collision::Top => reflect_y = ball_velocity.y < 0.0,
Collision::Bottom => reflect_y = ball_velocity.y > 0.0,
Collision::Inside => { /* do nothing */ }
}
// reflect velocity on the x-axis if we hit something on the x-axis
if reflect_x {
ball_velocity.x = -ball_velocity.x;
}
// reflect velocity on the y-axis if we hit something on the y-axis
if reflect_y {
ball_velocity.y = -ball_velocity.y;
}
}
}
}
fn play_collision_sound(
mut collision_events: EventReader<CollisionEvent>,
audio: Res<Audio>,
sound: Res<CollisionSound>,
) {
// Play a sound once per frame if a collision occurred.
if !collision_events.is_empty() {
// This prevents events staying active on the next frame.
collision_events.clear();
audio.play(sound.0.clone());
}
}