bevy/examples/3d/skybox.rs
Carter Anderson 01aedc8431 Spawn now takes a Bundle (#6054)
# Objective

Now that we can consolidate Bundles and Components under a single insert (thanks to #2975 and #6039), almost 100% of world spawns now look like `world.spawn().insert((Some, Tuple, Here))`. Spawning an entity without any components is an extremely uncommon pattern, so it makes sense to give spawn the "first class" ergonomic api. This consolidated api should be made consistent across all spawn apis (such as World and Commands).

## Solution

All `spawn` apis (`World::spawn`, `Commands:;spawn`, `ChildBuilder::spawn`, and `WorldChildBuilder::spawn`) now accept a bundle as input:

```rust
// before:
commands
  .spawn()
  .insert((A, B, C));
world
  .spawn()
  .insert((A, B, C);

// after
commands.spawn((A, B, C));
world.spawn((A, B, C));
```

All existing instances of `spawn_bundle` have been deprecated in favor of the new `spawn` api. A new `spawn_empty` has been added, replacing the old `spawn` api.  

By allowing `world.spawn(some_bundle)` to replace `world.spawn().insert(some_bundle)`, this opened the door to removing the initial entity allocation in the "empty" archetype / table done in `spawn()` (and subsequent move to the actual archetype in `.insert(some_bundle)`).

This improves spawn performance by over 10%:
![image](https://user-images.githubusercontent.com/2694663/191627587-4ab2f949-4ccd-4231-80eb-80dd4d9ad6b9.png)

To take this measurement, I added a new `world_spawn` benchmark.

Unfortunately, optimizing `Commands::spawn` is slightly less trivial, as Commands expose the Entity id of spawned entities prior to actually spawning. Doing the optimization would (naively) require assurances that the `spawn(some_bundle)` command is applied before all other commands involving the entity (which would not necessarily be true, if memory serves). Optimizing `Commands::spawn` this way does feel possible, but it will require careful thought (and maybe some additional checks), which deserves its own PR. For now, it has the same performance characteristics of the current `Commands::spawn_bundle` on main.

**Note that 99% of this PR is simple renames and refactors. The only code that needs careful scrutiny is the new `World::spawn()` impl, which is relatively straightforward, but it has some new unsafe code (which re-uses battle tested BundlerSpawner code path).** 

---

## Changelog

- All `spawn` apis (`World::spawn`, `Commands:;spawn`, `ChildBuilder::spawn`, and `WorldChildBuilder::spawn`) now accept a bundle as input
- All instances of `spawn_bundle` have been deprecated in favor of the new `spawn` api
- World and Commands now have `spawn_empty()`, which is equivalent to the old `spawn()` behavior.  

## Migration Guide

```rust
// Old (0.8):
commands
  .spawn()
  .insert_bundle((A, B, C));
// New (0.9)
commands.spawn((A, B, C));

// Old (0.8):
commands.spawn_bundle((A, B, C));
// New (0.9)
commands.spawn((A, B, C));

// Old (0.8):
let entity = commands.spawn().id();
// New (0.9)
let entity = commands.spawn_empty().id();

// Old (0.8)
let entity = world.spawn().id();
// New (0.9)
let entity = world.spawn_empty();
```
2022-09-23 19:55:54 +00:00

419 lines
13 KiB
Rust

//! Load a cubemap texture onto a cube like a skybox and cycle through different compressed texture formats
use std::f32::consts::PI;
use bevy::{
asset::LoadState,
input::mouse::MouseMotion,
pbr::{MaterialPipeline, MaterialPipelineKey},
prelude::*,
reflect::TypeUuid,
render::{
mesh::MeshVertexBufferLayout,
render_asset::RenderAssets,
render_resource::{
AsBindGroup, AsBindGroupError, BindGroupDescriptor, BindGroupEntry, BindGroupLayout,
BindGroupLayoutDescriptor, BindGroupLayoutEntry, BindingResource, BindingType,
OwnedBindingResource, PreparedBindGroup, RenderPipelineDescriptor, SamplerBindingType,
ShaderRef, ShaderStages, SpecializedMeshPipelineError, TextureSampleType,
TextureViewDescriptor, TextureViewDimension,
},
renderer::RenderDevice,
texture::{CompressedImageFormats, FallbackImage},
},
};
const CUBEMAPS: &[(&str, CompressedImageFormats)] = &[
(
"textures/Ryfjallet_cubemap.png",
CompressedImageFormats::NONE,
),
(
"textures/Ryfjallet_cubemap_astc4x4.ktx2",
CompressedImageFormats::ASTC_LDR,
),
(
"textures/Ryfjallet_cubemap_bc7.ktx2",
CompressedImageFormats::BC,
),
(
"textures/Ryfjallet_cubemap_etc2.ktx2",
CompressedImageFormats::ETC2,
),
];
fn main() {
App::new()
.add_plugins(DefaultPlugins)
.add_plugin(MaterialPlugin::<CubemapMaterial>::default())
.add_startup_system(setup)
.add_system(cycle_cubemap_asset)
.add_system(asset_loaded.after(cycle_cubemap_asset))
.add_system(camera_controller)
.add_system(animate_light_direction)
.run();
}
#[derive(Resource)]
struct Cubemap {
is_loaded: bool,
index: usize,
image_handle: Handle<Image>,
}
fn setup(mut commands: Commands, asset_server: Res<AssetServer>) {
// directional 'sun' light
commands.spawn(DirectionalLightBundle {
directional_light: DirectionalLight {
illuminance: 32000.0,
..default()
},
transform: Transform::from_xyz(0.0, 2.0, 0.0)
.with_rotation(Quat::from_rotation_x(-PI / 4.)),
..default()
});
let skybox_handle = asset_server.load(CUBEMAPS[0].0);
// camera
commands.spawn((
Camera3dBundle {
transform: Transform::from_xyz(0.0, 0.0, 8.0).looking_at(Vec3::ZERO, Vec3::Y),
..default()
},
CameraController::default(),
));
// ambient light
// NOTE: The ambient light is used to scale how bright the environment map is so with a bright
// environment map, use an appropriate colour and brightness to match
commands.insert_resource(AmbientLight {
color: Color::rgb_u8(210, 220, 240),
brightness: 1.0,
});
commands.insert_resource(Cubemap {
is_loaded: false,
index: 0,
image_handle: skybox_handle,
});
}
const CUBEMAP_SWAP_DELAY: f64 = 3.0;
fn cycle_cubemap_asset(
time: Res<Time>,
mut next_swap: Local<f64>,
mut cubemap: ResMut<Cubemap>,
asset_server: Res<AssetServer>,
render_device: Res<RenderDevice>,
) {
let now = time.seconds_since_startup();
if *next_swap == 0.0 {
*next_swap = now + CUBEMAP_SWAP_DELAY;
return;
} else if now < *next_swap {
return;
}
*next_swap += CUBEMAP_SWAP_DELAY;
let supported_compressed_formats =
CompressedImageFormats::from_features(render_device.features());
let mut new_index = cubemap.index;
for _ in 0..CUBEMAPS.len() {
new_index = (new_index + 1) % CUBEMAPS.len();
if supported_compressed_formats.contains(CUBEMAPS[new_index].1) {
break;
}
info!("Skipping unsupported format: {:?}", CUBEMAPS[new_index]);
}
// Skip swapping to the same texture. Useful for when ktx2, zstd, or compressed texture support
// is missing
if new_index == cubemap.index {
return;
}
cubemap.index = new_index;
cubemap.image_handle = asset_server.load(CUBEMAPS[cubemap.index].0);
cubemap.is_loaded = false;
}
fn asset_loaded(
mut commands: Commands,
asset_server: Res<AssetServer>,
mut images: ResMut<Assets<Image>>,
mut meshes: ResMut<Assets<Mesh>>,
mut cubemap_materials: ResMut<Assets<CubemapMaterial>>,
mut cubemap: ResMut<Cubemap>,
cubes: Query<&Handle<CubemapMaterial>>,
) {
if !cubemap.is_loaded
&& asset_server.get_load_state(cubemap.image_handle.clone_weak()) == LoadState::Loaded
{
info!("Swapping to {}...", CUBEMAPS[cubemap.index].0);
let mut image = images.get_mut(&cubemap.image_handle).unwrap();
// NOTE: PNGs do not have any metadata that could indicate they contain a cubemap texture,
// so they appear as one texture. The following code reconfigures the texture as necessary.
if image.texture_descriptor.array_layer_count() == 1 {
image.reinterpret_stacked_2d_as_array(
image.texture_descriptor.size.height / image.texture_descriptor.size.width,
);
image.texture_view_descriptor = Some(TextureViewDescriptor {
dimension: Some(TextureViewDimension::Cube),
..default()
});
}
// spawn cube
let mut updated = false;
for handle in cubes.iter() {
if let Some(material) = cubemap_materials.get_mut(handle) {
updated = true;
material.base_color_texture = Some(cubemap.image_handle.clone_weak());
}
}
if !updated {
commands.spawn(MaterialMeshBundle::<CubemapMaterial> {
mesh: meshes.add(Mesh::from(shape::Cube { size: 10000.0 })),
material: cubemap_materials.add(CubemapMaterial {
base_color_texture: Some(cubemap.image_handle.clone_weak()),
}),
..default()
});
}
cubemap.is_loaded = true;
}
}
fn animate_light_direction(
time: Res<Time>,
mut query: Query<&mut Transform, With<DirectionalLight>>,
) {
for mut transform in &mut query {
transform.rotate_y(time.delta_seconds() * 0.5);
}
}
#[derive(Debug, Clone, TypeUuid)]
#[uuid = "9509a0f8-3c05-48ee-a13e-a93226c7f488"]
struct CubemapMaterial {
base_color_texture: Option<Handle<Image>>,
}
impl Material for CubemapMaterial {
fn fragment_shader() -> ShaderRef {
"shaders/cubemap_unlit.wgsl".into()
}
fn specialize(
_pipeline: &MaterialPipeline<Self>,
descriptor: &mut RenderPipelineDescriptor,
_layout: &MeshVertexBufferLayout,
_key: MaterialPipelineKey<Self>,
) -> Result<(), SpecializedMeshPipelineError> {
descriptor.primitive.cull_mode = None;
Ok(())
}
}
impl AsBindGroup for CubemapMaterial {
type Data = ();
fn as_bind_group(
&self,
layout: &BindGroupLayout,
render_device: &RenderDevice,
images: &RenderAssets<Image>,
_fallback_image: &FallbackImage,
) -> Result<PreparedBindGroup<Self>, AsBindGroupError> {
let base_color_texture = self
.base_color_texture
.as_ref()
.ok_or(AsBindGroupError::RetryNextUpdate)?;
let image = images
.get(base_color_texture)
.ok_or(AsBindGroupError::RetryNextUpdate)?;
let bind_group = render_device.create_bind_group(&BindGroupDescriptor {
entries: &[
BindGroupEntry {
binding: 0,
resource: BindingResource::TextureView(&image.texture_view),
},
BindGroupEntry {
binding: 1,
resource: BindingResource::Sampler(&image.sampler),
},
],
label: Some("cubemap_texture_material_bind_group"),
layout,
});
Ok(PreparedBindGroup {
bind_group,
bindings: vec![
OwnedBindingResource::TextureView(image.texture_view.clone()),
OwnedBindingResource::Sampler(image.sampler.clone()),
],
data: (),
})
}
fn bind_group_layout(render_device: &RenderDevice) -> BindGroupLayout {
render_device.create_bind_group_layout(&BindGroupLayoutDescriptor {
entries: &[
// Cubemap Base Color Texture
BindGroupLayoutEntry {
binding: 0,
visibility: ShaderStages::FRAGMENT,
ty: BindingType::Texture {
multisampled: false,
sample_type: TextureSampleType::Float { filterable: true },
view_dimension: TextureViewDimension::Cube,
},
count: None,
},
// Cubemap Base Color Texture Sampler
BindGroupLayoutEntry {
binding: 1,
visibility: ShaderStages::FRAGMENT,
ty: BindingType::Sampler(SamplerBindingType::Filtering),
count: None,
},
],
label: None,
})
}
}
#[derive(Component)]
pub struct CameraController {
pub enabled: bool,
pub initialized: bool,
pub sensitivity: f32,
pub key_forward: KeyCode,
pub key_back: KeyCode,
pub key_left: KeyCode,
pub key_right: KeyCode,
pub key_up: KeyCode,
pub key_down: KeyCode,
pub key_run: KeyCode,
pub mouse_key_enable_mouse: MouseButton,
pub keyboard_key_enable_mouse: KeyCode,
pub walk_speed: f32,
pub run_speed: f32,
pub friction: f32,
pub pitch: f32,
pub yaw: f32,
pub velocity: Vec3,
}
impl Default for CameraController {
fn default() -> Self {
Self {
enabled: true,
initialized: false,
sensitivity: 0.5,
key_forward: KeyCode::W,
key_back: KeyCode::S,
key_left: KeyCode::A,
key_right: KeyCode::D,
key_up: KeyCode::E,
key_down: KeyCode::Q,
key_run: KeyCode::LShift,
mouse_key_enable_mouse: MouseButton::Left,
keyboard_key_enable_mouse: KeyCode::M,
walk_speed: 2.0,
run_speed: 6.0,
friction: 0.5,
pitch: 0.0,
yaw: 0.0,
velocity: Vec3::ZERO,
}
}
}
pub fn camera_controller(
time: Res<Time>,
mut mouse_events: EventReader<MouseMotion>,
mouse_button_input: Res<Input<MouseButton>>,
key_input: Res<Input<KeyCode>>,
mut move_toggled: Local<bool>,
mut query: Query<(&mut Transform, &mut CameraController), With<Camera>>,
) {
let dt = time.delta_seconds();
if let Ok((mut transform, mut options)) = query.get_single_mut() {
if !options.initialized {
let (yaw, pitch, _roll) = transform.rotation.to_euler(EulerRot::YXZ);
options.yaw = yaw;
options.pitch = pitch;
options.initialized = true;
}
if !options.enabled {
return;
}
// Handle key input
let mut axis_input = Vec3::ZERO;
if key_input.pressed(options.key_forward) {
axis_input.z += 1.0;
}
if key_input.pressed(options.key_back) {
axis_input.z -= 1.0;
}
if key_input.pressed(options.key_right) {
axis_input.x += 1.0;
}
if key_input.pressed(options.key_left) {
axis_input.x -= 1.0;
}
if key_input.pressed(options.key_up) {
axis_input.y += 1.0;
}
if key_input.pressed(options.key_down) {
axis_input.y -= 1.0;
}
if key_input.just_pressed(options.keyboard_key_enable_mouse) {
*move_toggled = !*move_toggled;
}
// Apply movement update
if axis_input != Vec3::ZERO {
let max_speed = if key_input.pressed(options.key_run) {
options.run_speed
} else {
options.walk_speed
};
options.velocity = axis_input.normalize() * max_speed;
} else {
let friction = options.friction.clamp(0.0, 1.0);
options.velocity *= 1.0 - friction;
if options.velocity.length_squared() < 1e-6 {
options.velocity = Vec3::ZERO;
}
}
let forward = transform.forward();
let right = transform.right();
transform.translation += options.velocity.x * dt * right
+ options.velocity.y * dt * Vec3::Y
+ options.velocity.z * dt * forward;
// Handle mouse input
let mut mouse_delta = Vec2::ZERO;
if mouse_button_input.pressed(options.mouse_key_enable_mouse) || *move_toggled {
for mouse_event in mouse_events.iter() {
mouse_delta += mouse_event.delta;
}
}
if mouse_delta != Vec2::ZERO {
// Apply look update
options.pitch = (options.pitch - mouse_delta.y * 0.5 * options.sensitivity * dt)
.clamp(-PI / 2., PI / 2.);
options.yaw -= mouse_delta.x * options.sensitivity * dt;
transform.rotation = Quat::from_euler(EulerRot::ZYX, 0.0, options.yaw, options.pitch);
}
}
}