mirror of
https://github.com/bevyengine/bevy
synced 2024-12-20 18:13:10 +00:00
7ff47a111f
# Objective Mark simple functions as const in `bevy_math` https://github.com/bevyengine/bevy/issues/16124 ## Solution - Make them const ## Testing `cargo test -p bevy_math --all-features`
726 lines
23 KiB
Rust
726 lines
23 KiB
Rust
use core::f32::consts::TAU;
|
|
|
|
use glam::FloatExt;
|
|
|
|
use crate::{
|
|
ops,
|
|
prelude::{Mat2, Vec2},
|
|
};
|
|
|
|
#[cfg(feature = "bevy_reflect")]
|
|
use bevy_reflect::{std_traits::ReflectDefault, Reflect};
|
|
#[cfg(all(feature = "serialize", feature = "bevy_reflect"))]
|
|
use bevy_reflect::{ReflectDeserialize, ReflectSerialize};
|
|
|
|
/// A counterclockwise 2D rotation.
|
|
///
|
|
/// # Example
|
|
///
|
|
/// ```
|
|
/// # use approx::assert_relative_eq;
|
|
/// # use bevy_math::{Rot2, Vec2};
|
|
/// use std::f32::consts::PI;
|
|
///
|
|
/// // Create rotations from radians or degrees
|
|
/// let rotation1 = Rot2::radians(PI / 2.0);
|
|
/// let rotation2 = Rot2::degrees(45.0);
|
|
///
|
|
/// // Get the angle back as radians or degrees
|
|
/// assert_eq!(rotation1.as_degrees(), 90.0);
|
|
/// assert_eq!(rotation2.as_radians(), PI / 4.0);
|
|
///
|
|
/// // "Add" rotations together using `*`
|
|
/// assert_relative_eq!(rotation1 * rotation2, Rot2::degrees(135.0));
|
|
///
|
|
/// // Rotate vectors
|
|
/// assert_relative_eq!(rotation1 * Vec2::X, Vec2::Y);
|
|
/// ```
|
|
#[derive(Clone, Copy, Debug, PartialEq)]
|
|
#[cfg_attr(feature = "serialize", derive(serde::Serialize, serde::Deserialize))]
|
|
#[cfg_attr(
|
|
feature = "bevy_reflect",
|
|
derive(Reflect),
|
|
reflect(Debug, PartialEq, Default)
|
|
)]
|
|
#[cfg_attr(
|
|
all(feature = "serialize", feature = "bevy_reflect"),
|
|
reflect(Serialize, Deserialize)
|
|
)]
|
|
#[doc(alias = "rotation", alias = "rotation2d", alias = "rotation_2d")]
|
|
pub struct Rot2 {
|
|
/// The cosine of the rotation angle in radians.
|
|
///
|
|
/// This is the real part of the unit complex number representing the rotation.
|
|
pub cos: f32,
|
|
/// The sine of the rotation angle in radians.
|
|
///
|
|
/// This is the imaginary part of the unit complex number representing the rotation.
|
|
pub sin: f32,
|
|
}
|
|
|
|
impl Default for Rot2 {
|
|
fn default() -> Self {
|
|
Self::IDENTITY
|
|
}
|
|
}
|
|
|
|
impl Rot2 {
|
|
/// No rotation.
|
|
pub const IDENTITY: Self = Self { cos: 1.0, sin: 0.0 };
|
|
|
|
/// A rotation of π radians.
|
|
pub const PI: Self = Self {
|
|
cos: -1.0,
|
|
sin: 0.0,
|
|
};
|
|
|
|
/// A counterclockwise rotation of π/2 radians.
|
|
pub const FRAC_PI_2: Self = Self { cos: 0.0, sin: 1.0 };
|
|
|
|
/// A counterclockwise rotation of π/3 radians.
|
|
pub const FRAC_PI_3: Self = Self {
|
|
cos: 0.5,
|
|
sin: 0.866_025_4,
|
|
};
|
|
|
|
/// A counterclockwise rotation of π/4 radians.
|
|
pub const FRAC_PI_4: Self = Self {
|
|
cos: core::f32::consts::FRAC_1_SQRT_2,
|
|
sin: core::f32::consts::FRAC_1_SQRT_2,
|
|
};
|
|
|
|
/// A counterclockwise rotation of π/6 radians.
|
|
pub const FRAC_PI_6: Self = Self {
|
|
cos: 0.866_025_4,
|
|
sin: 0.5,
|
|
};
|
|
|
|
/// A counterclockwise rotation of π/8 radians.
|
|
pub const FRAC_PI_8: Self = Self {
|
|
cos: 0.923_879_5,
|
|
sin: 0.382_683_43,
|
|
};
|
|
|
|
/// Creates a [`Rot2`] from a counterclockwise angle in radians.
|
|
///
|
|
/// # Note
|
|
///
|
|
/// The input rotation will always be clamped to the range `(-π, π]` by design.
|
|
///
|
|
/// # Example
|
|
///
|
|
/// ```
|
|
/// # use bevy_math::Rot2;
|
|
/// # use approx::assert_relative_eq;
|
|
/// # use std::f32::consts::{FRAC_PI_2, PI};
|
|
///
|
|
/// let rot1 = Rot2::radians(3.0 * FRAC_PI_2);
|
|
/// let rot2 = Rot2::radians(-FRAC_PI_2);
|
|
/// assert_relative_eq!(rot1, rot2);
|
|
///
|
|
/// let rot3 = Rot2::radians(PI);
|
|
/// assert_relative_eq!(rot1 * rot1, rot3);
|
|
/// ```
|
|
#[inline]
|
|
pub fn radians(radians: f32) -> Self {
|
|
let (sin, cos) = ops::sin_cos(radians);
|
|
Self::from_sin_cos(sin, cos)
|
|
}
|
|
|
|
/// Creates a [`Rot2`] from a counterclockwise angle in degrees.
|
|
///
|
|
/// # Note
|
|
///
|
|
/// The input rotation will always be clamped to the range `(-180°, 180°]` by design.
|
|
///
|
|
/// # Example
|
|
///
|
|
/// ```
|
|
/// # use bevy_math::Rot2;
|
|
/// # use approx::assert_relative_eq;
|
|
///
|
|
/// let rot1 = Rot2::degrees(270.0);
|
|
/// let rot2 = Rot2::degrees(-90.0);
|
|
/// assert_relative_eq!(rot1, rot2);
|
|
///
|
|
/// let rot3 = Rot2::degrees(180.0);
|
|
/// assert_relative_eq!(rot1 * rot1, rot3);
|
|
/// ```
|
|
#[inline]
|
|
pub fn degrees(degrees: f32) -> Self {
|
|
Self::radians(degrees.to_radians())
|
|
}
|
|
|
|
/// Creates a [`Rot2`] from a counterclockwise fraction of a full turn of 360 degrees.
|
|
///
|
|
/// # Note
|
|
///
|
|
/// The input rotation will always be clamped to the range `(-50%, 50%]` by design.
|
|
///
|
|
/// # Example
|
|
///
|
|
/// ```
|
|
/// # use bevy_math::Rot2;
|
|
/// # use approx::assert_relative_eq;
|
|
///
|
|
/// let rot1 = Rot2::turn_fraction(0.75);
|
|
/// let rot2 = Rot2::turn_fraction(-0.25);
|
|
/// assert_relative_eq!(rot1, rot2);
|
|
///
|
|
/// let rot3 = Rot2::turn_fraction(0.5);
|
|
/// assert_relative_eq!(rot1 * rot1, rot3);
|
|
/// ```
|
|
#[inline]
|
|
pub fn turn_fraction(fraction: f32) -> Self {
|
|
Self::radians(TAU * fraction)
|
|
}
|
|
|
|
/// Creates a [`Rot2`] from the sine and cosine of an angle in radians.
|
|
///
|
|
/// The rotation is only valid if `sin * sin + cos * cos == 1.0`.
|
|
///
|
|
/// # Panics
|
|
///
|
|
/// Panics if `sin * sin + cos * cos != 1.0` when the `glam_assert` feature is enabled.
|
|
#[inline]
|
|
pub fn from_sin_cos(sin: f32, cos: f32) -> Self {
|
|
let rotation = Self { sin, cos };
|
|
debug_assert!(
|
|
rotation.is_normalized(),
|
|
"the given sine and cosine produce an invalid rotation"
|
|
);
|
|
rotation
|
|
}
|
|
|
|
/// Returns the rotation in radians in the `(-pi, pi]` range.
|
|
#[inline]
|
|
pub fn as_radians(self) -> f32 {
|
|
ops::atan2(self.sin, self.cos)
|
|
}
|
|
|
|
/// Returns the rotation in degrees in the `(-180, 180]` range.
|
|
#[inline]
|
|
pub fn as_degrees(self) -> f32 {
|
|
self.as_radians().to_degrees()
|
|
}
|
|
|
|
/// Returns the rotation as a fraction of a full 360 degree turn.
|
|
#[inline]
|
|
pub fn as_turn_fraction(self) -> f32 {
|
|
self.as_radians() / TAU
|
|
}
|
|
|
|
/// Returns the sine and cosine of the rotation angle in radians.
|
|
#[inline]
|
|
pub const fn sin_cos(self) -> (f32, f32) {
|
|
(self.sin, self.cos)
|
|
}
|
|
|
|
/// Computes the length or norm of the complex number used to represent the rotation.
|
|
///
|
|
/// The length is typically expected to be `1.0`. Unexpectedly denormalized rotations
|
|
/// can be a result of incorrect construction or floating point error caused by
|
|
/// successive operations.
|
|
#[inline]
|
|
#[doc(alias = "norm")]
|
|
pub fn length(self) -> f32 {
|
|
Vec2::new(self.sin, self.cos).length()
|
|
}
|
|
|
|
/// Computes the squared length or norm of the complex number used to represent the rotation.
|
|
///
|
|
/// This is generally faster than [`Rot2::length()`], as it avoids a square
|
|
/// root operation.
|
|
///
|
|
/// The length is typically expected to be `1.0`. Unexpectedly denormalized rotations
|
|
/// can be a result of incorrect construction or floating point error caused by
|
|
/// successive operations.
|
|
#[inline]
|
|
#[doc(alias = "norm2")]
|
|
pub fn length_squared(self) -> f32 {
|
|
Vec2::new(self.sin, self.cos).length_squared()
|
|
}
|
|
|
|
/// Computes `1.0 / self.length()`.
|
|
///
|
|
/// For valid results, `self` must _not_ have a length of zero.
|
|
#[inline]
|
|
pub fn length_recip(self) -> f32 {
|
|
Vec2::new(self.sin, self.cos).length_recip()
|
|
}
|
|
|
|
/// Returns `self` with a length of `1.0` if possible, and `None` otherwise.
|
|
///
|
|
/// `None` will be returned if the sine and cosine of `self` are both zero (or very close to zero),
|
|
/// or if either of them is NaN or infinite.
|
|
///
|
|
/// Note that [`Rot2`] should typically already be normalized by design.
|
|
/// Manual normalization is only needed when successive operations result in
|
|
/// accumulated floating point error, or if the rotation was constructed
|
|
/// with invalid values.
|
|
#[inline]
|
|
pub fn try_normalize(self) -> Option<Self> {
|
|
let recip = self.length_recip();
|
|
if recip.is_finite() && recip > 0.0 {
|
|
Some(Self::from_sin_cos(self.sin * recip, self.cos * recip))
|
|
} else {
|
|
None
|
|
}
|
|
}
|
|
|
|
/// Returns `self` with a length of `1.0`.
|
|
///
|
|
/// Note that [`Rot2`] should typically already be normalized by design.
|
|
/// Manual normalization is only needed when successive operations result in
|
|
/// accumulated floating point error, or if the rotation was constructed
|
|
/// with invalid values.
|
|
///
|
|
/// # Panics
|
|
///
|
|
/// Panics if `self` has a length of zero, NaN, or infinity when debug assertions are enabled.
|
|
#[inline]
|
|
pub fn normalize(self) -> Self {
|
|
let length_recip = self.length_recip();
|
|
Self::from_sin_cos(self.sin * length_recip, self.cos * length_recip)
|
|
}
|
|
|
|
/// Returns `self` after an approximate normalization, assuming the value is already nearly normalized.
|
|
/// Useful for preventing numerical error accumulation.
|
|
/// See [`Dir3::fast_renormalize`](crate::Dir3::fast_renormalize) for an example of when such error accumulation might occur.
|
|
#[inline]
|
|
pub fn fast_renormalize(self) -> Self {
|
|
let length_squared = self.length_squared();
|
|
// Based on a Taylor approximation of the inverse square root, see [`Dir3::fast_renormalize`](crate::Dir3::fast_renormalize) for more details.
|
|
let length_recip_approx = 0.5 * (3.0 - length_squared);
|
|
Rot2 {
|
|
sin: self.sin * length_recip_approx,
|
|
cos: self.cos * length_recip_approx,
|
|
}
|
|
}
|
|
|
|
/// Returns `true` if the rotation is neither infinite nor NaN.
|
|
#[inline]
|
|
pub fn is_finite(self) -> bool {
|
|
self.sin.is_finite() && self.cos.is_finite()
|
|
}
|
|
|
|
/// Returns `true` if the rotation is NaN.
|
|
#[inline]
|
|
pub fn is_nan(self) -> bool {
|
|
self.sin.is_nan() || self.cos.is_nan()
|
|
}
|
|
|
|
/// Returns whether `self` has a length of `1.0` or not.
|
|
///
|
|
/// Uses a precision threshold of approximately `1e-4`.
|
|
#[inline]
|
|
pub fn is_normalized(self) -> bool {
|
|
// The allowed length is 1 +/- 1e-4, so the largest allowed
|
|
// squared length is (1 + 1e-4)^2 = 1.00020001, which makes
|
|
// the threshold for the squared length approximately 2e-4.
|
|
(self.length_squared() - 1.0).abs() <= 2e-4
|
|
}
|
|
|
|
/// Returns `true` if the rotation is near [`Rot2::IDENTITY`].
|
|
#[inline]
|
|
pub fn is_near_identity(self) -> bool {
|
|
// Same as `Quat::is_near_identity`, but using sine and cosine
|
|
let threshold_angle_sin = 0.000_049_692_047; // let threshold_angle = 0.002_847_144_6;
|
|
self.cos > 0.0 && self.sin.abs() < threshold_angle_sin
|
|
}
|
|
|
|
/// Returns the angle in radians needed to make `self` and `other` coincide.
|
|
#[inline]
|
|
#[deprecated(
|
|
since = "0.15.0",
|
|
note = "Use `angle_to` instead, the semantics of `angle_between` will change in the future."
|
|
)]
|
|
pub fn angle_between(self, other: Self) -> f32 {
|
|
self.angle_to(other)
|
|
}
|
|
|
|
/// Returns the angle in radians needed to make `self` and `other` coincide.
|
|
#[inline]
|
|
pub fn angle_to(self, other: Self) -> f32 {
|
|
(other * self.inverse()).as_radians()
|
|
}
|
|
|
|
/// Returns the inverse of the rotation. This is also the conjugate
|
|
/// of the unit complex number representing the rotation.
|
|
#[inline]
|
|
#[must_use]
|
|
#[doc(alias = "conjugate")]
|
|
pub const fn inverse(self) -> Self {
|
|
Self {
|
|
cos: self.cos,
|
|
sin: -self.sin,
|
|
}
|
|
}
|
|
|
|
/// Performs a linear interpolation between `self` and `rhs` based on
|
|
/// the value `s`, and normalizes the rotation afterwards.
|
|
///
|
|
/// When `s == 0.0`, the result will be equal to `self`.
|
|
/// When `s == 1.0`, the result will be equal to `rhs`.
|
|
///
|
|
/// This is slightly more efficient than [`slerp`](Self::slerp), and produces a similar result
|
|
/// when the difference between the two rotations is small. At larger differences,
|
|
/// the result resembles a kind of ease-in-out effect.
|
|
///
|
|
/// If you would like the angular velocity to remain constant, consider using [`slerp`](Self::slerp) instead.
|
|
///
|
|
/// # Details
|
|
///
|
|
/// `nlerp` corresponds to computing an angle for a point at position `s` on a line drawn
|
|
/// between the endpoints of the arc formed by `self` and `rhs` on a unit circle,
|
|
/// and normalizing the result afterwards.
|
|
///
|
|
/// Note that if the angles are opposite like 0 and π, the line will pass through the origin,
|
|
/// and the resulting angle will always be either `self` or `rhs` depending on `s`.
|
|
/// If `s` happens to be `0.5` in this case, a valid rotation cannot be computed, and `self`
|
|
/// will be returned as a fallback.
|
|
///
|
|
/// # Example
|
|
///
|
|
/// ```
|
|
/// # use bevy_math::Rot2;
|
|
/// #
|
|
/// let rot1 = Rot2::IDENTITY;
|
|
/// let rot2 = Rot2::degrees(135.0);
|
|
///
|
|
/// let result1 = rot1.nlerp(rot2, 1.0 / 3.0);
|
|
/// assert_eq!(result1.as_degrees(), 28.675055);
|
|
///
|
|
/// let result2 = rot1.nlerp(rot2, 0.5);
|
|
/// assert_eq!(result2.as_degrees(), 67.5);
|
|
/// ```
|
|
#[inline]
|
|
pub fn nlerp(self, end: Self, s: f32) -> Self {
|
|
Self {
|
|
sin: self.sin.lerp(end.sin, s),
|
|
cos: self.cos.lerp(end.cos, s),
|
|
}
|
|
.try_normalize()
|
|
// Fall back to the start rotation.
|
|
// This can happen when `self` and `end` are opposite angles and `s == 0.5`,
|
|
// because the resulting rotation would be zero, which cannot be normalized.
|
|
.unwrap_or(self)
|
|
}
|
|
|
|
/// Performs a spherical linear interpolation between `self` and `end`
|
|
/// based on the value `s`.
|
|
///
|
|
/// This corresponds to interpolating between the two angles at a constant angular velocity.
|
|
///
|
|
/// When `s == 0.0`, the result will be equal to `self`.
|
|
/// When `s == 1.0`, the result will be equal to `rhs`.
|
|
///
|
|
/// If you would like the rotation to have a kind of ease-in-out effect, consider
|
|
/// using the slightly more efficient [`nlerp`](Self::nlerp) instead.
|
|
///
|
|
/// # Example
|
|
///
|
|
/// ```
|
|
/// # use bevy_math::Rot2;
|
|
/// #
|
|
/// let rot1 = Rot2::IDENTITY;
|
|
/// let rot2 = Rot2::degrees(135.0);
|
|
///
|
|
/// let result1 = rot1.slerp(rot2, 1.0 / 3.0);
|
|
/// assert_eq!(result1.as_degrees(), 45.0);
|
|
///
|
|
/// let result2 = rot1.slerp(rot2, 0.5);
|
|
/// assert_eq!(result2.as_degrees(), 67.5);
|
|
/// ```
|
|
#[inline]
|
|
pub fn slerp(self, end: Self, s: f32) -> Self {
|
|
self * Self::radians(self.angle_to(end) * s)
|
|
}
|
|
}
|
|
|
|
impl From<f32> for Rot2 {
|
|
/// Creates a [`Rot2`] from a counterclockwise angle in radians.
|
|
fn from(rotation: f32) -> Self {
|
|
Self::radians(rotation)
|
|
}
|
|
}
|
|
|
|
impl From<Rot2> for Mat2 {
|
|
/// Creates a [`Mat2`] rotation matrix from a [`Rot2`].
|
|
fn from(rot: Rot2) -> Self {
|
|
Mat2::from_cols_array(&[rot.cos, -rot.sin, rot.sin, rot.cos])
|
|
}
|
|
}
|
|
|
|
impl core::ops::Mul for Rot2 {
|
|
type Output = Self;
|
|
|
|
fn mul(self, rhs: Self) -> Self::Output {
|
|
Self {
|
|
cos: self.cos * rhs.cos - self.sin * rhs.sin,
|
|
sin: self.sin * rhs.cos + self.cos * rhs.sin,
|
|
}
|
|
}
|
|
}
|
|
|
|
impl core::ops::MulAssign for Rot2 {
|
|
fn mul_assign(&mut self, rhs: Self) {
|
|
*self = *self * rhs;
|
|
}
|
|
}
|
|
|
|
impl core::ops::Mul<Vec2> for Rot2 {
|
|
type Output = Vec2;
|
|
|
|
/// Rotates a [`Vec2`] by a [`Rot2`].
|
|
fn mul(self, rhs: Vec2) -> Self::Output {
|
|
Vec2::new(
|
|
rhs.x * self.cos - rhs.y * self.sin,
|
|
rhs.x * self.sin + rhs.y * self.cos,
|
|
)
|
|
}
|
|
}
|
|
|
|
#[cfg(any(feature = "approx", test))]
|
|
impl approx::AbsDiffEq for Rot2 {
|
|
type Epsilon = f32;
|
|
fn default_epsilon() -> f32 {
|
|
f32::EPSILON
|
|
}
|
|
fn abs_diff_eq(&self, other: &Self, epsilon: f32) -> bool {
|
|
self.cos.abs_diff_eq(&other.cos, epsilon) && self.sin.abs_diff_eq(&other.sin, epsilon)
|
|
}
|
|
}
|
|
|
|
#[cfg(any(feature = "approx", test))]
|
|
impl approx::RelativeEq for Rot2 {
|
|
fn default_max_relative() -> f32 {
|
|
f32::EPSILON
|
|
}
|
|
fn relative_eq(&self, other: &Self, epsilon: f32, max_relative: f32) -> bool {
|
|
self.cos.relative_eq(&other.cos, epsilon, max_relative)
|
|
&& self.sin.relative_eq(&other.sin, epsilon, max_relative)
|
|
}
|
|
}
|
|
|
|
#[cfg(any(feature = "approx", test))]
|
|
impl approx::UlpsEq for Rot2 {
|
|
fn default_max_ulps() -> u32 {
|
|
4
|
|
}
|
|
fn ulps_eq(&self, other: &Self, epsilon: f32, max_ulps: u32) -> bool {
|
|
self.cos.ulps_eq(&other.cos, epsilon, max_ulps)
|
|
&& self.sin.ulps_eq(&other.sin, epsilon, max_ulps)
|
|
}
|
|
}
|
|
|
|
#[cfg(test)]
|
|
mod tests {
|
|
use core::f32::consts::FRAC_PI_2;
|
|
|
|
use approx::assert_relative_eq;
|
|
|
|
use crate::{Dir2, Rot2, Vec2};
|
|
|
|
#[test]
|
|
fn creation() {
|
|
let rotation1 = Rot2::radians(FRAC_PI_2);
|
|
let rotation2 = Rot2::degrees(90.0);
|
|
let rotation3 = Rot2::from_sin_cos(1.0, 0.0);
|
|
let rotation4 = Rot2::turn_fraction(0.25);
|
|
|
|
// All three rotations should be equal
|
|
assert_relative_eq!(rotation1.sin, rotation2.sin);
|
|
assert_relative_eq!(rotation1.cos, rotation2.cos);
|
|
assert_relative_eq!(rotation1.sin, rotation3.sin);
|
|
assert_relative_eq!(rotation1.cos, rotation3.cos);
|
|
assert_relative_eq!(rotation1.sin, rotation4.sin);
|
|
assert_relative_eq!(rotation1.cos, rotation4.cos);
|
|
|
|
// The rotation should be 90 degrees
|
|
assert_relative_eq!(rotation1.as_radians(), FRAC_PI_2);
|
|
assert_relative_eq!(rotation1.as_degrees(), 90.0);
|
|
assert_relative_eq!(rotation1.as_turn_fraction(), 0.25);
|
|
}
|
|
|
|
#[test]
|
|
fn rotate() {
|
|
let rotation = Rot2::degrees(90.0);
|
|
|
|
assert_relative_eq!(rotation * Vec2::X, Vec2::Y);
|
|
assert_relative_eq!(rotation * Dir2::Y, Dir2::NEG_X);
|
|
}
|
|
|
|
#[test]
|
|
fn rotation_range() {
|
|
// the rotation range is `(-180, 180]` and the constructors
|
|
// normalize the rotations to that range
|
|
assert_relative_eq!(Rot2::radians(3.0 * FRAC_PI_2), Rot2::radians(-FRAC_PI_2));
|
|
assert_relative_eq!(Rot2::degrees(270.0), Rot2::degrees(-90.0));
|
|
assert_relative_eq!(Rot2::turn_fraction(0.75), Rot2::turn_fraction(-0.25));
|
|
}
|
|
|
|
#[test]
|
|
fn add() {
|
|
let rotation1 = Rot2::degrees(90.0);
|
|
let rotation2 = Rot2::degrees(180.0);
|
|
|
|
// 90 deg + 180 deg becomes -90 deg after it wraps around to be within the `(-180, 180]` range
|
|
assert_eq!((rotation1 * rotation2).as_degrees(), -90.0);
|
|
}
|
|
|
|
#[test]
|
|
fn subtract() {
|
|
let rotation1 = Rot2::degrees(90.0);
|
|
let rotation2 = Rot2::degrees(45.0);
|
|
|
|
assert_relative_eq!((rotation1 * rotation2.inverse()).as_degrees(), 45.0);
|
|
|
|
// This should be equivalent to the above
|
|
assert_relative_eq!(rotation2.angle_to(rotation1), core::f32::consts::FRAC_PI_4);
|
|
}
|
|
|
|
#[test]
|
|
fn length() {
|
|
let rotation = Rot2 {
|
|
sin: 10.0,
|
|
cos: 5.0,
|
|
};
|
|
|
|
assert_eq!(rotation.length_squared(), 125.0);
|
|
assert_eq!(rotation.length(), 11.18034);
|
|
assert!((rotation.normalize().length() - 1.0).abs() < 10e-7);
|
|
}
|
|
|
|
#[test]
|
|
fn is_near_identity() {
|
|
assert!(!Rot2::radians(0.1).is_near_identity());
|
|
assert!(!Rot2::radians(-0.1).is_near_identity());
|
|
assert!(Rot2::radians(0.00001).is_near_identity());
|
|
assert!(Rot2::radians(-0.00001).is_near_identity());
|
|
assert!(Rot2::radians(0.0).is_near_identity());
|
|
}
|
|
|
|
#[test]
|
|
fn normalize() {
|
|
let rotation = Rot2 {
|
|
sin: 10.0,
|
|
cos: 5.0,
|
|
};
|
|
let normalized_rotation = rotation.normalize();
|
|
|
|
assert_eq!(normalized_rotation.sin, 0.89442724);
|
|
assert_eq!(normalized_rotation.cos, 0.44721362);
|
|
|
|
assert!(!rotation.is_normalized());
|
|
assert!(normalized_rotation.is_normalized());
|
|
}
|
|
|
|
#[test]
|
|
fn fast_renormalize() {
|
|
let rotation = Rot2 { sin: 1.0, cos: 0.5 };
|
|
let normalized_rotation = rotation.normalize();
|
|
|
|
let mut unnormalized_rot = rotation;
|
|
let mut renormalized_rot = rotation;
|
|
let mut initially_normalized_rot = normalized_rotation;
|
|
let mut fully_normalized_rot = normalized_rotation;
|
|
|
|
// Compute a 64x (=2⁶) multiple of the rotation.
|
|
for _ in 0..6 {
|
|
unnormalized_rot = unnormalized_rot * unnormalized_rot;
|
|
renormalized_rot = renormalized_rot * renormalized_rot;
|
|
initially_normalized_rot = initially_normalized_rot * initially_normalized_rot;
|
|
fully_normalized_rot = fully_normalized_rot * fully_normalized_rot;
|
|
|
|
renormalized_rot = renormalized_rot.fast_renormalize();
|
|
fully_normalized_rot = fully_normalized_rot.normalize();
|
|
}
|
|
|
|
assert!(!unnormalized_rot.is_normalized());
|
|
|
|
assert!(renormalized_rot.is_normalized());
|
|
assert!(fully_normalized_rot.is_normalized());
|
|
|
|
assert_relative_eq!(fully_normalized_rot, renormalized_rot, epsilon = 0.000001);
|
|
assert_relative_eq!(
|
|
fully_normalized_rot,
|
|
unnormalized_rot.normalize(),
|
|
epsilon = 0.000001
|
|
);
|
|
assert_relative_eq!(
|
|
fully_normalized_rot,
|
|
initially_normalized_rot.normalize(),
|
|
epsilon = 0.000001
|
|
);
|
|
}
|
|
|
|
#[test]
|
|
fn try_normalize() {
|
|
// Valid
|
|
assert!(Rot2 {
|
|
sin: 10.0,
|
|
cos: 5.0,
|
|
}
|
|
.try_normalize()
|
|
.is_some());
|
|
|
|
// NaN
|
|
assert!(Rot2 {
|
|
sin: f32::NAN,
|
|
cos: 5.0,
|
|
}
|
|
.try_normalize()
|
|
.is_none());
|
|
|
|
// Zero
|
|
assert!(Rot2 { sin: 0.0, cos: 0.0 }.try_normalize().is_none());
|
|
|
|
// Non-finite
|
|
assert!(Rot2 {
|
|
sin: f32::INFINITY,
|
|
cos: 5.0,
|
|
}
|
|
.try_normalize()
|
|
.is_none());
|
|
}
|
|
|
|
#[test]
|
|
fn nlerp() {
|
|
let rot1 = Rot2::IDENTITY;
|
|
let rot2 = Rot2::degrees(135.0);
|
|
|
|
assert_eq!(rot1.nlerp(rot2, 1.0 / 3.0).as_degrees(), 28.675055);
|
|
assert!(rot1.nlerp(rot2, 0.0).is_near_identity());
|
|
assert_eq!(rot1.nlerp(rot2, 0.5).as_degrees(), 67.5);
|
|
assert_eq!(rot1.nlerp(rot2, 1.0).as_degrees(), 135.0);
|
|
|
|
let rot1 = Rot2::IDENTITY;
|
|
let rot2 = Rot2::from_sin_cos(0.0, -1.0);
|
|
|
|
assert!(rot1.nlerp(rot2, 1.0 / 3.0).is_near_identity());
|
|
assert!(rot1.nlerp(rot2, 0.0).is_near_identity());
|
|
// At 0.5, there is no valid rotation, so the fallback is the original angle.
|
|
assert_eq!(rot1.nlerp(rot2, 0.5).as_degrees(), 0.0);
|
|
assert_eq!(rot1.nlerp(rot2, 1.0).as_degrees().abs(), 180.0);
|
|
}
|
|
|
|
#[test]
|
|
fn slerp() {
|
|
let rot1 = Rot2::IDENTITY;
|
|
let rot2 = Rot2::degrees(135.0);
|
|
|
|
assert_eq!(rot1.slerp(rot2, 1.0 / 3.0).as_degrees(), 45.0);
|
|
assert!(rot1.slerp(rot2, 0.0).is_near_identity());
|
|
assert_eq!(rot1.slerp(rot2, 0.5).as_degrees(), 67.5);
|
|
assert_eq!(rot1.slerp(rot2, 1.0).as_degrees(), 135.0);
|
|
|
|
let rot1 = Rot2::IDENTITY;
|
|
let rot2 = Rot2::from_sin_cos(0.0, -1.0);
|
|
|
|
assert!((rot1.slerp(rot2, 1.0 / 3.0).as_degrees() - 60.0).abs() < 10e-6);
|
|
assert!(rot1.slerp(rot2, 0.0).is_near_identity());
|
|
assert_eq!(rot1.slerp(rot2, 0.5).as_degrees(), 90.0);
|
|
assert_eq!(rot1.slerp(rot2, 1.0).as_degrees().abs(), 180.0);
|
|
}
|
|
}
|