bevy/pipelined/bevy_pbr2/src/render/light.rs
François 3de391be21 fix calls to as_rgba_linear (#3200)
# Objective

- After #3192, some places where `as_rgba_linear` was called were doing too many conversions

## Solution

- Fix the conversions
2021-11-28 10:40:42 +00:00

973 lines
37 KiB
Rust

use crate::{
AmbientLight, CubemapVisibleEntities, DirectionalLight, DirectionalLightShadowMap, DrawMesh,
MeshPipeline, NotShadowCaster, PointLight, PointLightShadowMap, SetMeshBindGroup,
SHADOW_SHADER_HANDLE,
};
use bevy_asset::Handle;
use bevy_core::FloatOrd;
use bevy_core_pipeline::Transparent3d;
use bevy_ecs::{
prelude::*,
system::{lifetimeless::*, SystemParamItem},
};
use bevy_math::{const_vec3, Mat4, Vec3, Vec4};
use bevy_render2::{
camera::CameraProjection,
color::Color,
mesh::Mesh,
render_asset::RenderAssets,
render_graph::{Node, NodeRunError, RenderGraphContext, SlotInfo, SlotType},
render_phase::{
CachedPipelinePhaseItem, DrawFunctionId, DrawFunctions, EntityPhaseItem,
EntityRenderCommand, PhaseItem, RenderCommandResult, RenderPhase, SetItemPipeline,
TrackedRenderPass,
},
render_resource::*,
renderer::{RenderContext, RenderDevice, RenderQueue},
texture::*,
view::{
ExtractedView, ViewUniform, ViewUniformOffset, ViewUniforms, VisibleEntities, VisibleEntity,
},
};
use bevy_transform::components::GlobalTransform;
use crevice::std140::AsStd140;
use std::num::NonZeroU32;
#[derive(Debug, Hash, PartialEq, Eq, Clone, SystemLabel)]
pub enum RenderLightSystems {
ExtractLights,
PrepareLights,
QueueShadows,
}
pub struct ExtractedAmbientLight {
color: Color,
brightness: f32,
}
#[derive(Component)]
pub struct ExtractedPointLight {
color: Color,
/// luminous intensity in lumens per steradian
intensity: f32,
range: f32,
radius: f32,
transform: GlobalTransform,
shadows_enabled: bool,
shadow_depth_bias: f32,
shadow_normal_bias: f32,
}
pub type ExtractedPointLightShadowMap = PointLightShadowMap;
#[derive(Component)]
pub struct ExtractedDirectionalLight {
color: Color,
illuminance: f32,
direction: Vec3,
projection: Mat4,
shadows_enabled: bool,
shadow_depth_bias: f32,
shadow_normal_bias: f32,
}
pub type ExtractedDirectionalLightShadowMap = DirectionalLightShadowMap;
#[repr(C)]
#[derive(Copy, Clone, AsStd140, Default, Debug)]
pub struct GpuPointLight {
projection: Mat4,
color: Vec4,
position: Vec3,
inverse_square_range: f32,
radius: f32,
near: f32,
far: f32,
flags: u32,
shadow_depth_bias: f32,
shadow_normal_bias: f32,
}
// NOTE: These must match the bit flags in bevy_pbr2/src/render/pbr.frag!
bitflags::bitflags! {
#[repr(transparent)]
struct PointLightFlags: u32 {
const SHADOWS_ENABLED = (1 << 0);
const NONE = 0;
const UNINITIALIZED = 0xFFFF;
}
}
#[repr(C)]
#[derive(Copy, Clone, AsStd140, Default, Debug)]
pub struct GpuDirectionalLight {
view_projection: Mat4,
color: Vec4,
dir_to_light: Vec3,
flags: u32,
shadow_depth_bias: f32,
shadow_normal_bias: f32,
}
// NOTE: These must match the bit flags in bevy_pbr2/src/render/pbr.frag!
bitflags::bitflags! {
#[repr(transparent)]
struct DirectionalLightFlags: u32 {
const SHADOWS_ENABLED = (1 << 0);
const NONE = 0;
const UNINITIALIZED = 0xFFFF;
}
}
#[repr(C)]
#[derive(Copy, Clone, Debug, AsStd140)]
pub struct GpuLights {
// TODO: this comes first to work around a WGSL alignment issue. We need to solve this issue before releasing the renderer rework
point_lights: [GpuPointLight; MAX_POINT_LIGHTS],
directional_lights: [GpuDirectionalLight; MAX_DIRECTIONAL_LIGHTS],
ambient_color: Vec4,
n_point_lights: u32,
n_directional_lights: u32,
}
// NOTE: this must be kept in sync with the same constants in pbr.frag
pub const MAX_POINT_LIGHTS: usize = 10;
pub const MAX_DIRECTIONAL_LIGHTS: usize = 1;
pub const POINT_SHADOW_LAYERS: u32 = (6 * MAX_POINT_LIGHTS) as u32;
pub const DIRECTIONAL_SHADOW_LAYERS: u32 = MAX_DIRECTIONAL_LIGHTS as u32;
pub const SHADOW_FORMAT: TextureFormat = TextureFormat::Depth32Float;
pub struct ShadowPipeline {
pub view_layout: BindGroupLayout,
pub mesh_layout: BindGroupLayout,
pub point_light_sampler: Sampler,
pub directional_light_sampler: Sampler,
}
// TODO: this pattern for initializing the shaders / pipeline isn't ideal. this should be handled by the asset system
impl FromWorld for ShadowPipeline {
fn from_world(world: &mut World) -> Self {
let world = world.cell();
let render_device = world.get_resource::<RenderDevice>().unwrap();
let view_layout = render_device.create_bind_group_layout(&BindGroupLayoutDescriptor {
entries: &[
// View
BindGroupLayoutEntry {
binding: 0,
visibility: ShaderStages::VERTEX | ShaderStages::FRAGMENT,
ty: BindingType::Buffer {
ty: BufferBindingType::Uniform,
has_dynamic_offset: true,
min_binding_size: BufferSize::new(ViewUniform::std140_size_static() as u64),
},
count: None,
},
],
label: Some("shadow_view_layout"),
});
let mesh_pipeline = world.get_resource::<MeshPipeline>().unwrap();
ShadowPipeline {
view_layout,
mesh_layout: mesh_pipeline.mesh_layout.clone(),
point_light_sampler: render_device.create_sampler(&SamplerDescriptor {
address_mode_u: AddressMode::ClampToEdge,
address_mode_v: AddressMode::ClampToEdge,
address_mode_w: AddressMode::ClampToEdge,
mag_filter: FilterMode::Linear,
min_filter: FilterMode::Linear,
mipmap_filter: FilterMode::Nearest,
compare: Some(CompareFunction::GreaterEqual),
..Default::default()
}),
directional_light_sampler: render_device.create_sampler(&SamplerDescriptor {
address_mode_u: AddressMode::ClampToEdge,
address_mode_v: AddressMode::ClampToEdge,
address_mode_w: AddressMode::ClampToEdge,
mag_filter: FilterMode::Linear,
min_filter: FilterMode::Linear,
mipmap_filter: FilterMode::Nearest,
compare: Some(CompareFunction::GreaterEqual),
..Default::default()
}),
}
}
}
bitflags::bitflags! {
#[repr(transparent)]
pub struct ShadowPipelineKey: u32 {
const NONE = 0;
const VERTEX_TANGENTS = (1 << 0);
}
}
impl SpecializedPipeline for ShadowPipeline {
type Key = ShadowPipelineKey;
fn specialize(&self, key: Self::Key) -> RenderPipelineDescriptor {
let (vertex_array_stride, vertex_attributes) =
if key.contains(ShadowPipelineKey::VERTEX_TANGENTS) {
(
48,
vec![
// Position (GOTCHA! Vertex_Position isn't first in the buffer due to how Mesh sorts attributes (alphabetically))
VertexAttribute {
format: VertexFormat::Float32x3,
offset: 12,
shader_location: 0,
},
// Normal
VertexAttribute {
format: VertexFormat::Float32x3,
offset: 0,
shader_location: 1,
},
// Uv (GOTCHA! uv is no longer third in the buffer due to how Mesh sorts attributes (alphabetically))
VertexAttribute {
format: VertexFormat::Float32x2,
offset: 40,
shader_location: 2,
},
// Tangent
VertexAttribute {
format: VertexFormat::Float32x4,
offset: 24,
shader_location: 3,
},
],
)
} else {
(
32,
vec![
// Position (GOTCHA! Vertex_Position isn't first in the buffer due to how Mesh sorts attributes (alphabetically))
VertexAttribute {
format: VertexFormat::Float32x3,
offset: 12,
shader_location: 0,
},
// Normal
VertexAttribute {
format: VertexFormat::Float32x3,
offset: 0,
shader_location: 1,
},
// Uv
VertexAttribute {
format: VertexFormat::Float32x2,
offset: 24,
shader_location: 2,
},
],
)
};
RenderPipelineDescriptor {
vertex: VertexState {
shader: SHADOW_SHADER_HANDLE.typed::<Shader>(),
entry_point: "vertex".into(),
shader_defs: vec![],
buffers: vec![VertexBufferLayout {
array_stride: vertex_array_stride,
step_mode: VertexStepMode::Vertex,
attributes: vertex_attributes,
}],
},
fragment: None,
layout: Some(vec![self.view_layout.clone(), self.mesh_layout.clone()]),
primitive: PrimitiveState {
topology: PrimitiveTopology::TriangleList,
strip_index_format: None,
front_face: FrontFace::Ccw,
cull_mode: None,
polygon_mode: PolygonMode::Fill,
clamp_depth: false,
conservative: false,
},
depth_stencil: Some(DepthStencilState {
format: SHADOW_FORMAT,
depth_write_enabled: true,
depth_compare: CompareFunction::GreaterEqual,
stencil: StencilState {
front: StencilFaceState::IGNORE,
back: StencilFaceState::IGNORE,
read_mask: 0,
write_mask: 0,
},
bias: DepthBiasState {
constant: 0,
slope_scale: 0.0,
clamp: 0.0,
},
}),
multisample: MultisampleState::default(),
label: Some("shadow_pipeline".into()),
}
}
}
pub fn extract_lights(
mut commands: Commands,
ambient_light: Res<AmbientLight>,
point_light_shadow_map: Res<PointLightShadowMap>,
directional_light_shadow_map: Res<DirectionalLightShadowMap>,
mut point_lights: Query<(
Entity,
&PointLight,
&mut CubemapVisibleEntities,
&GlobalTransform,
)>,
mut directional_lights: Query<(
Entity,
&DirectionalLight,
&mut VisibleEntities,
&GlobalTransform,
)>,
) {
commands.insert_resource(ExtractedAmbientLight {
color: ambient_light.color,
brightness: ambient_light.brightness,
});
commands.insert_resource::<ExtractedPointLightShadowMap>(point_light_shadow_map.clone());
commands.insert_resource::<ExtractedDirectionalLightShadowMap>(
directional_light_shadow_map.clone(),
);
// This is the point light shadow map texel size for one face of the cube as a distance of 1.0
// world unit from the light.
// point_light_texel_size = 2.0 * 1.0 * tan(PI / 4.0) / cube face width in texels
// PI / 4.0 is half the cube face fov, tan(PI / 4.0) = 1.0, so this simplifies to:
// point_light_texel_size = 2.0 / cube face width in texels
// NOTE: When using various PCF kernel sizes, this will need to be adjusted, according to:
// https://catlikecoding.com/unity/tutorials/custom-srp/point-and-spot-shadows/
let point_light_texel_size = 2.0 / point_light_shadow_map.size as f32;
for (entity, point_light, cubemap_visible_entities, transform) in point_lights.iter_mut() {
let render_cubemap_visible_entities = std::mem::take(cubemap_visible_entities.into_inner());
commands.get_or_spawn(entity).insert_bundle((
ExtractedPointLight {
color: point_light.color,
// NOTE: Map from luminous power in lumens to luminous intensity in lumens per steradian
// for a point light. See https://google.github.io/filament/Filament.html#mjx-eqn-pointLightLuminousPower
// for details.
intensity: point_light.intensity / (4.0 * std::f32::consts::PI),
range: point_light.range,
radius: point_light.radius,
transform: *transform,
shadows_enabled: point_light.shadows_enabled,
shadow_depth_bias: point_light.shadow_depth_bias,
// The factor of SQRT_2 is for the worst-case diagonal offset
shadow_normal_bias: point_light.shadow_normal_bias
* point_light_texel_size
* std::f32::consts::SQRT_2,
},
render_cubemap_visible_entities,
));
}
for (entity, directional_light, visible_entities, transform) in directional_lights.iter_mut() {
// Calulate the directional light shadow map texel size using the largest x,y dimension of
// the orthographic projection divided by the shadow map resolution
// NOTE: When using various PCF kernel sizes, this will need to be adjusted, according to:
// https://catlikecoding.com/unity/tutorials/custom-srp/directional-shadows/
let largest_dimension = (directional_light.shadow_projection.right
- directional_light.shadow_projection.left)
.max(
directional_light.shadow_projection.top
- directional_light.shadow_projection.bottom,
);
let directional_light_texel_size =
largest_dimension / directional_light_shadow_map.size as f32;
let render_visible_entities = std::mem::take(visible_entities.into_inner());
commands.get_or_spawn(entity).insert_bundle((
ExtractedDirectionalLight {
color: directional_light.color,
illuminance: directional_light.illuminance,
direction: transform.forward(),
projection: directional_light.shadow_projection.get_projection_matrix(),
shadows_enabled: directional_light.shadows_enabled,
shadow_depth_bias: directional_light.shadow_depth_bias,
// The factor of SQRT_2 is for the worst-case diagonal offset
shadow_normal_bias: directional_light.shadow_normal_bias
* directional_light_texel_size
* std::f32::consts::SQRT_2,
},
render_visible_entities,
));
}
}
// Can't do `Vec3::Y * -1.0` because mul isn't const
const NEGATIVE_X: Vec3 = const_vec3!([-1.0, 0.0, 0.0]);
const NEGATIVE_Y: Vec3 = const_vec3!([0.0, -1.0, 0.0]);
const NEGATIVE_Z: Vec3 = const_vec3!([0.0, 0.0, -1.0]);
pub(crate) struct CubeMapFace {
pub(crate) target: Vec3,
pub(crate) up: Vec3,
}
// see https://www.khronos.org/opengl/wiki/Cubemap_Texture
pub(crate) const CUBE_MAP_FACES: [CubeMapFace; 6] = [
// 0 GL_TEXTURE_CUBE_MAP_POSITIVE_X
CubeMapFace {
target: NEGATIVE_X,
up: NEGATIVE_Y,
},
// 1 GL_TEXTURE_CUBE_MAP_NEGATIVE_X
CubeMapFace {
target: Vec3::X,
up: NEGATIVE_Y,
},
// 2 GL_TEXTURE_CUBE_MAP_POSITIVE_Y
CubeMapFace {
target: NEGATIVE_Y,
up: Vec3::Z,
},
// 3 GL_TEXTURE_CUBE_MAP_NEGATIVE_Y
CubeMapFace {
target: Vec3::Y,
up: NEGATIVE_Z,
},
// 4 GL_TEXTURE_CUBE_MAP_POSITIVE_Z
CubeMapFace {
target: NEGATIVE_Z,
up: NEGATIVE_Y,
},
// 5 GL_TEXTURE_CUBE_MAP_NEGATIVE_Z
CubeMapFace {
target: Vec3::Z,
up: NEGATIVE_Y,
},
];
fn face_index_to_name(face_index: usize) -> &'static str {
match face_index {
0 => "+x",
1 => "-x",
2 => "+y",
3 => "-y",
4 => "+z",
5 => "-z",
_ => "invalid",
}
}
#[derive(Component)]
pub struct ShadowView {
pub depth_texture_view: TextureView,
pub pass_name: String,
}
#[derive(Component)]
pub struct ViewShadowBindings {
pub point_light_depth_texture: Texture,
pub point_light_depth_texture_view: TextureView,
pub directional_light_depth_texture: Texture,
pub directional_light_depth_texture_view: TextureView,
}
#[derive(Component)]
pub struct ViewLightEntities {
pub lights: Vec<Entity>,
}
#[derive(Component)]
pub struct ViewLightsUniformOffset {
pub offset: u32,
}
#[derive(Default)]
pub struct LightMeta {
pub view_gpu_lights: DynamicUniformVec<GpuLights>,
pub shadow_view_bind_group: Option<BindGroup>,
}
#[derive(Component)]
pub enum LightEntity {
Directional {
light_entity: Entity,
},
Point {
light_entity: Entity,
face_index: usize,
},
}
#[allow(clippy::too_many_arguments)]
pub fn prepare_lights(
mut commands: Commands,
mut texture_cache: ResMut<TextureCache>,
render_device: Res<RenderDevice>,
render_queue: Res<RenderQueue>,
mut light_meta: ResMut<LightMeta>,
views: Query<Entity, With<RenderPhase<Transparent3d>>>,
ambient_light: Res<ExtractedAmbientLight>,
point_light_shadow_map: Res<ExtractedPointLightShadowMap>,
directional_light_shadow_map: Res<ExtractedDirectionalLightShadowMap>,
point_lights: Query<(Entity, &ExtractedPointLight)>,
directional_lights: Query<(Entity, &ExtractedDirectionalLight)>,
) {
light_meta.view_gpu_lights.clear();
// Pre-calculate for PointLights
let cube_face_projection =
Mat4::perspective_infinite_reverse_rh(std::f32::consts::FRAC_PI_2, 1.0, 0.1);
let cube_face_rotations = CUBE_MAP_FACES
.iter()
.map(|CubeMapFace { target, up }| GlobalTransform::identity().looking_at(*target, *up))
.collect::<Vec<_>>();
// set up light data for each view
for entity in views.iter() {
let point_light_depth_texture = texture_cache.get(
&render_device,
TextureDescriptor {
size: Extent3d {
width: point_light_shadow_map.size as u32,
height: point_light_shadow_map.size as u32,
depth_or_array_layers: POINT_SHADOW_LAYERS,
},
mip_level_count: 1,
sample_count: 1,
dimension: TextureDimension::D2,
format: SHADOW_FORMAT,
label: Some("point_light_shadow_map_texture"),
usage: TextureUsages::RENDER_ATTACHMENT | TextureUsages::TEXTURE_BINDING,
},
);
let directional_light_depth_texture = texture_cache.get(
&render_device,
TextureDescriptor {
size: Extent3d {
width: directional_light_shadow_map.size as u32,
height: directional_light_shadow_map.size as u32,
depth_or_array_layers: DIRECTIONAL_SHADOW_LAYERS,
},
mip_level_count: 1,
sample_count: 1,
dimension: TextureDimension::D2,
format: SHADOW_FORMAT,
label: Some("directional_light_shadow_map_texture"),
usage: TextureUsages::RENDER_ATTACHMENT | TextureUsages::TEXTURE_BINDING,
},
);
let mut view_lights = Vec::new();
let mut gpu_lights = GpuLights {
ambient_color: Vec4::from_slice(&ambient_light.color.as_linear_rgba_f32())
* ambient_light.brightness,
n_point_lights: point_lights.iter().len() as u32,
n_directional_lights: directional_lights.iter().len() as u32,
point_lights: [GpuPointLight::default(); MAX_POINT_LIGHTS],
directional_lights: [GpuDirectionalLight::default(); MAX_DIRECTIONAL_LIGHTS],
};
// TODO: this should select lights based on relevance to the view instead of the first ones that show up in a query
for (light_index, (light_entity, light)) in point_lights.iter().enumerate() {
// ignore scale because we don't want to effectively scale light radius and range
// by applying those as a view transform to shadow map rendering of objects
// and ignore rotation because we want the shadow map projections to align with the axes
let view_translation = GlobalTransform::from_translation(light.transform.translation);
if light.shadows_enabled {
for (face_index, view_rotation) in cube_face_rotations.iter().enumerate() {
let depth_texture_view =
point_light_depth_texture
.texture
.create_view(&TextureViewDescriptor {
label: Some("point_light_shadow_map_texture_view"),
format: None,
dimension: Some(TextureViewDimension::D2),
aspect: TextureAspect::All,
base_mip_level: 0,
mip_level_count: None,
base_array_layer: (light_index * 6 + face_index) as u32,
array_layer_count: NonZeroU32::new(1),
});
let view_light_entity = commands
.spawn()
.insert_bundle((
ShadowView {
depth_texture_view,
pass_name: format!(
"shadow pass point light {} {}",
light_index,
face_index_to_name(face_index)
),
},
ExtractedView {
width: point_light_shadow_map.size as u32,
height: point_light_shadow_map.size as u32,
transform: view_translation * *view_rotation,
projection: cube_face_projection,
},
RenderPhase::<Shadow>::default(),
LightEntity::Point {
light_entity,
face_index,
},
))
.id();
view_lights.push(view_light_entity);
}
}
let mut flags = PointLightFlags::NONE;
if light.shadows_enabled {
flags |= PointLightFlags::SHADOWS_ENABLED;
}
gpu_lights.point_lights[light_index] = GpuPointLight {
projection: cube_face_projection,
// premultiply color by intensity
// we don't use the alpha at all, so no reason to multiply only [0..3]
color: Vec4::from_slice(&light.color.as_linear_rgba_f32()) * light.intensity,
radius: light.radius,
position: light.transform.translation,
inverse_square_range: 1.0 / (light.range * light.range),
near: 0.1,
far: light.range,
flags: flags.bits,
shadow_depth_bias: light.shadow_depth_bias,
shadow_normal_bias: light.shadow_normal_bias,
};
}
for (i, (light_entity, light)) in directional_lights
.iter()
.enumerate()
.take(MAX_DIRECTIONAL_LIGHTS)
{
// direction is negated to be ready for N.L
let dir_to_light = -light.direction;
// convert from illuminance (lux) to candelas
//
// exposure is hard coded at the moment but should be replaced
// by values coming from the camera
// see: https://google.github.io/filament/Filament.html#imagingpipeline/physicallybasedcamera/exposuresettings
const APERTURE: f32 = 4.0;
const SHUTTER_SPEED: f32 = 1.0 / 250.0;
const SENSITIVITY: f32 = 100.0;
let ev100 =
f32::log2(APERTURE * APERTURE / SHUTTER_SPEED) - f32::log2(SENSITIVITY / 100.0);
let exposure = 1.0 / (f32::powf(2.0, ev100) * 1.2);
let intensity = light.illuminance * exposure;
// NOTE: A directional light seems to have to have an eye position on the line along the direction of the light
// through the world origin. I (Rob Swain) do not yet understand why it cannot be translated away from this.
let view = Mat4::look_at_rh(Vec3::ZERO, light.direction, Vec3::Y);
// NOTE: This orthographic projection defines the volume within which shadows from a directional light can be cast
let projection = light.projection;
let mut flags = DirectionalLightFlags::NONE;
if light.shadows_enabled {
flags |= DirectionalLightFlags::SHADOWS_ENABLED;
}
gpu_lights.directional_lights[i] = GpuDirectionalLight {
// premultiply color by intensity
// we don't use the alpha at all, so no reason to multiply only [0..3]
color: Vec4::from_slice(&light.color.as_linear_rgba_f32()) * intensity,
dir_to_light,
// NOTE: * view is correct, it should not be view.inverse() here
view_projection: projection * view,
flags: flags.bits,
shadow_depth_bias: light.shadow_depth_bias,
shadow_normal_bias: light.shadow_normal_bias,
};
if light.shadows_enabled {
let depth_texture_view =
directional_light_depth_texture
.texture
.create_view(&TextureViewDescriptor {
label: Some("directional_light_shadow_map_texture_view"),
format: None,
dimension: Some(TextureViewDimension::D2),
aspect: TextureAspect::All,
base_mip_level: 0,
mip_level_count: None,
base_array_layer: i as u32,
array_layer_count: NonZeroU32::new(1),
});
let view_light_entity = commands
.spawn()
.insert_bundle((
ShadowView {
depth_texture_view,
pass_name: format!("shadow pass directional light {}", i),
},
ExtractedView {
width: directional_light_shadow_map.size as u32,
height: directional_light_shadow_map.size as u32,
transform: GlobalTransform::from_matrix(view.inverse()),
projection,
},
RenderPhase::<Shadow>::default(),
LightEntity::Directional { light_entity },
))
.id();
view_lights.push(view_light_entity);
}
}
let point_light_depth_texture_view =
point_light_depth_texture
.texture
.create_view(&TextureViewDescriptor {
label: Some("point_light_shadow_map_array_texture_view"),
format: None,
dimension: Some(TextureViewDimension::CubeArray),
aspect: TextureAspect::All,
base_mip_level: 0,
mip_level_count: None,
base_array_layer: 0,
array_layer_count: None,
});
let directional_light_depth_texture_view = directional_light_depth_texture
.texture
.create_view(&TextureViewDescriptor {
label: Some("directional_light_shadow_map_array_texture_view"),
format: None,
dimension: Some(TextureViewDimension::D2Array),
aspect: TextureAspect::All,
base_mip_level: 0,
mip_level_count: None,
base_array_layer: 0,
array_layer_count: None,
});
commands.entity(entity).insert_bundle((
ViewShadowBindings {
point_light_depth_texture: point_light_depth_texture.texture,
point_light_depth_texture_view,
directional_light_depth_texture: directional_light_depth_texture.texture,
directional_light_depth_texture_view,
},
ViewLightEntities {
lights: view_lights,
},
ViewLightsUniformOffset {
offset: light_meta.view_gpu_lights.push(gpu_lights),
},
));
}
light_meta
.view_gpu_lights
.write_buffer(&render_device, &render_queue);
}
pub fn queue_shadow_view_bind_group(
render_device: Res<RenderDevice>,
shadow_pipeline: Res<ShadowPipeline>,
mut light_meta: ResMut<LightMeta>,
view_uniforms: Res<ViewUniforms>,
) {
if let Some(view_binding) = view_uniforms.uniforms.binding() {
light_meta.shadow_view_bind_group =
Some(render_device.create_bind_group(&BindGroupDescriptor {
entries: &[BindGroupEntry {
binding: 0,
resource: view_binding,
}],
label: Some("shadow_view_bind_group"),
layout: &shadow_pipeline.view_layout,
}));
}
}
#[allow(clippy::too_many_arguments)]
pub fn queue_shadows(
shadow_draw_functions: Res<DrawFunctions<Shadow>>,
shadow_pipeline: Res<ShadowPipeline>,
casting_meshes: Query<&Handle<Mesh>, Without<NotShadowCaster>>,
render_meshes: Res<RenderAssets<Mesh>>,
mut pipelines: ResMut<SpecializedPipelines<ShadowPipeline>>,
mut pipeline_cache: ResMut<RenderPipelineCache>,
view_lights: Query<&ViewLightEntities>,
mut view_light_shadow_phases: Query<(&LightEntity, &mut RenderPhase<Shadow>)>,
point_light_entities: Query<&CubemapVisibleEntities, With<ExtractedPointLight>>,
directional_light_entities: Query<&VisibleEntities, With<ExtractedDirectionalLight>>,
) {
for view_lights in view_lights.iter() {
let draw_shadow_mesh = shadow_draw_functions
.read()
.get_id::<DrawShadowMesh>()
.unwrap();
for view_light_entity in view_lights.lights.iter().copied() {
let (light_entity, mut shadow_phase) =
view_light_shadow_phases.get_mut(view_light_entity).unwrap();
let visible_entities = match light_entity {
LightEntity::Directional { light_entity } => directional_light_entities
.get(*light_entity)
.expect("Failed to get directional light visible entities"),
LightEntity::Point {
light_entity,
face_index,
} => point_light_entities
.get(*light_entity)
.expect("Failed to get point light visible entities")
.get(*face_index),
};
// NOTE: Lights with shadow mapping disabled will have no visible entities
// so no meshes will be queued
for VisibleEntity { entity, .. } in visible_entities.iter() {
let mut key = ShadowPipelineKey::empty();
if let Ok(mesh_handle) = casting_meshes.get(*entity) {
if let Some(mesh) = render_meshes.get(mesh_handle) {
if mesh.has_tangents {
key |= ShadowPipelineKey::VERTEX_TANGENTS;
}
}
let pipeline_id =
pipelines.specialize(&mut pipeline_cache, &shadow_pipeline, key);
shadow_phase.add(Shadow {
draw_function: draw_shadow_mesh,
pipeline: pipeline_id,
entity: *entity,
distance: 0.0, // TODO: sort back-to-front
});
}
}
}
}
}
pub struct Shadow {
pub distance: f32,
pub entity: Entity,
pub pipeline: CachedPipelineId,
pub draw_function: DrawFunctionId,
}
impl PhaseItem for Shadow {
type SortKey = FloatOrd;
#[inline]
fn sort_key(&self) -> Self::SortKey {
FloatOrd(self.distance)
}
#[inline]
fn draw_function(&self) -> DrawFunctionId {
self.draw_function
}
}
impl EntityPhaseItem for Shadow {
fn entity(&self) -> Entity {
self.entity
}
}
impl CachedPipelinePhaseItem for Shadow {
#[inline]
fn cached_pipeline(&self) -> CachedPipelineId {
self.pipeline
}
}
pub struct ShadowPassNode {
main_view_query: QueryState<&'static ViewLightEntities>,
view_light_query: QueryState<(&'static ShadowView, &'static RenderPhase<Shadow>)>,
}
impl ShadowPassNode {
pub const IN_VIEW: &'static str = "view";
pub fn new(world: &mut World) -> Self {
Self {
main_view_query: QueryState::new(world),
view_light_query: QueryState::new(world),
}
}
}
impl Node for ShadowPassNode {
fn input(&self) -> Vec<SlotInfo> {
vec![SlotInfo::new(ShadowPassNode::IN_VIEW, SlotType::Entity)]
}
fn update(&mut self, world: &mut World) {
self.main_view_query.update_archetypes(world);
self.view_light_query.update_archetypes(world);
}
fn run(
&self,
graph: &mut RenderGraphContext,
render_context: &mut RenderContext,
world: &World,
) -> Result<(), NodeRunError> {
let view_entity = graph.get_input_entity(Self::IN_VIEW)?;
if let Ok(view_lights) = self.main_view_query.get_manual(world, view_entity) {
for view_light_entity in view_lights.lights.iter().copied() {
let (view_light, shadow_phase) = self
.view_light_query
.get_manual(world, view_light_entity)
.unwrap();
let pass_descriptor = RenderPassDescriptor {
label: Some(&view_light.pass_name),
color_attachments: &[],
depth_stencil_attachment: Some(RenderPassDepthStencilAttachment {
view: &view_light.depth_texture_view,
depth_ops: Some(Operations {
load: LoadOp::Clear(0.0),
store: true,
}),
stencil_ops: None,
}),
};
let draw_functions = world.get_resource::<DrawFunctions<Shadow>>().unwrap();
let render_pass = render_context
.command_encoder
.begin_render_pass(&pass_descriptor);
let mut draw_functions = draw_functions.write();
let mut tracked_pass = TrackedRenderPass::new(render_pass);
for item in shadow_phase.items.iter() {
let draw_function = draw_functions.get_mut(item.draw_function).unwrap();
draw_function.draw(world, &mut tracked_pass, view_light_entity, item);
}
}
}
Ok(())
}
}
pub type DrawShadowMesh = (
SetItemPipeline,
SetShadowViewBindGroup<0>,
SetMeshBindGroup<1>,
DrawMesh,
);
pub struct SetShadowViewBindGroup<const I: usize>;
impl<const I: usize> EntityRenderCommand for SetShadowViewBindGroup<I> {
type Param = (SRes<LightMeta>, SQuery<Read<ViewUniformOffset>>);
#[inline]
fn render<'w>(
view: Entity,
_item: Entity,
(light_meta, view_query): SystemParamItem<'w, '_, Self::Param>,
pass: &mut TrackedRenderPass<'w>,
) -> RenderCommandResult {
let view_uniform_offset = view_query.get(view).unwrap();
pass.set_bind_group(
I,
light_meta
.into_inner()
.shadow_view_bind_group
.as_ref()
.unwrap(),
&[view_uniform_offset.offset],
);
RenderCommandResult::Success
}
}