bevy/examples/shader/post_processing.rs
Rob Parrett e1e2407091
Fix post_processing example on webgl2 (#9361)
# Objective

The `post_processing` example is currently broken when run with webgl2.

```
cargo run --example post_processing --target=wasm32-unknown-unknown
```

```
wasm.js:387 panicked at 'wgpu error: Validation Error

Caused by:
    In Device::create_render_pipeline
      note: label = `post_process_pipeline`
    In the provided shader, the type given for group 0 binding 2 has a size of 4. As the device does not support `DownlevelFlags::BUFFER_BINDINGS_NOT_16_BYTE_ALIGNED`, the type must have a size that is a multiple of 16 bytes.
```

I bisected the breakage to c7eaedd6a1.

## Solution

Add padding when using webgl2
2023-08-04 17:44:29 +00:00

413 lines
17 KiB
Rust

//! This example shows how to create a custom render pass that runs after the main pass
//! and reads the texture generated by the main pass.
//!
//! The example shader is a very simple implementation of chromatic aberration.
//!
//! This is a fairly low level example and assumes some familiarity with rendering concepts and wgpu.
use bevy::{
asset::ChangeWatcher,
core_pipeline::{
clear_color::ClearColorConfig, core_3d,
fullscreen_vertex_shader::fullscreen_shader_vertex_state,
},
prelude::*,
render::{
extract_component::{
ComponentUniforms, ExtractComponent, ExtractComponentPlugin, UniformComponentPlugin,
},
render_graph::{Node, NodeRunError, RenderGraphApp, RenderGraphContext},
render_resource::{
BindGroupDescriptor, BindGroupEntry, BindGroupLayout, BindGroupLayoutDescriptor,
BindGroupLayoutEntry, BindingResource, BindingType, CachedRenderPipelineId,
ColorTargetState, ColorWrites, FragmentState, MultisampleState, Operations,
PipelineCache, PrimitiveState, RenderPassColorAttachment, RenderPassDescriptor,
RenderPipelineDescriptor, Sampler, SamplerBindingType, SamplerDescriptor, ShaderStages,
ShaderType, TextureFormat, TextureSampleType, TextureViewDimension,
},
renderer::{RenderContext, RenderDevice},
texture::BevyDefault,
view::{ExtractedView, ViewTarget},
RenderApp,
},
utils::Duration,
};
fn main() {
App::new()
.add_plugins((
DefaultPlugins.set(AssetPlugin {
// Hot reloading the shader works correctly
watch_for_changes: ChangeWatcher::with_delay(Duration::from_millis(200)),
..default()
}),
PostProcessPlugin,
))
.add_systems(Startup, setup)
.add_systems(Update, (rotate, update_settings))
.run();
}
/// It is generally encouraged to set up post processing effects as a plugin
struct PostProcessPlugin;
impl Plugin for PostProcessPlugin {
fn build(&self, app: &mut App) {
app.add_plugins((
// The settings will be a component that lives in the main world but will
// be extracted to the render world every frame.
// This makes it possible to control the effect from the main world.
// This plugin will take care of extracting it automatically.
// It's important to derive [`ExtractComponent`] on [`PostProcessingSettings`]
// for this plugin to work correctly.
ExtractComponentPlugin::<PostProcessSettings>::default(),
// The settings will also be the data used in the shader.
// This plugin will prepare the component for the GPU by creating a uniform buffer
// and writing the data to that buffer every frame.
UniformComponentPlugin::<PostProcessSettings>::default(),
));
// We need to get the render app from the main app
let Ok(render_app) = app.get_sub_app_mut(RenderApp) else {
return;
};
render_app
// Bevy's renderer uses a render graph which is a collection of nodes in a directed acyclic graph.
// It currently runs on each view/camera and executes each node in the specified order.
// It will make sure that any node that needs a dependency from another node
// only runs when that dependency is done.
//
// Each node can execute arbitrary work, but it generally runs at least one render pass.
// A node only has access to the render world, so if you need data from the main world
// you need to extract it manually or with the plugin like above.
// Add a [`Node`] to the [`RenderGraph`]
// The Node needs to impl FromWorld
.add_render_graph_node::<PostProcessNode>(
// Specify the name of the graph, in this case we want the graph for 3d
core_3d::graph::NAME,
// It also needs the name of the node
PostProcessNode::NAME,
)
.add_render_graph_edges(
core_3d::graph::NAME,
// Specify the node ordering.
// This will automatically create all required node edges to enforce the given ordering.
&[
core_3d::graph::node::TONEMAPPING,
PostProcessNode::NAME,
core_3d::graph::node::END_MAIN_PASS_POST_PROCESSING,
],
);
}
fn finish(&self, app: &mut App) {
// We need to get the render app from the main app
let Ok(render_app) = app.get_sub_app_mut(RenderApp) else {
return;
};
render_app
// Initialize the pipeline
.init_resource::<PostProcessPipeline>();
}
}
/// The post process node used for the render graph
struct PostProcessNode {
// The node needs a query to gather data from the ECS in order to do its rendering,
// but it's not a normal system so we need to define it manually.
query: QueryState<&'static ViewTarget, With<ExtractedView>>,
}
impl PostProcessNode {
pub const NAME: &str = "post_process";
}
impl FromWorld for PostProcessNode {
fn from_world(world: &mut World) -> Self {
Self {
query: QueryState::new(world),
}
}
}
impl Node for PostProcessNode {
// This will run every frame before the run() method
// The important difference is that `self` is `mut` here
fn update(&mut self, world: &mut World) {
// Since this is not a system we need to update the query manually.
// This is mostly boilerplate. There are plans to remove this in the future.
// For now, you can just copy it.
self.query.update_archetypes(world);
}
// Runs the node logic
// This is where you encode draw commands.
//
// This will run on every view on which the graph is running. If you don't want your effect to run on every camera,
// you'll need to make sure you have a marker component to identify which camera(s) should run the effect.
fn run(
&self,
graph_context: &mut RenderGraphContext,
render_context: &mut RenderContext,
world: &World,
) -> Result<(), NodeRunError> {
// Get the entity of the view for the render graph where this node is running
let view_entity = graph_context.view_entity();
// We get the data we need from the world based on the view entity passed to the node.
// The data is the query that was defined earlier in the [`PostProcessNode`]
let Ok(view_target) = self.query.get_manual(world, view_entity) else {
return Ok(());
};
// Get the pipeline resource that contains the global data we need to create the render pipeline
let post_process_pipeline = world.resource::<PostProcessPipeline>();
// The pipeline cache is a cache of all previously created pipelines.
// It is required to avoid creating a new pipeline each frame, which is expensive due to shader compilation.
let pipeline_cache = world.resource::<PipelineCache>();
// Get the pipeline from the cache
let Some(pipeline) = pipeline_cache.get_render_pipeline(post_process_pipeline.pipeline_id) else {
return Ok(());
};
// Get the settings uniform binding
let settings_uniforms = world.resource::<ComponentUniforms<PostProcessSettings>>();
let Some(settings_binding) = settings_uniforms.uniforms().binding() else {
return Ok(());
};
// This will start a new "post process write", obtaining two texture
// views from the view target - a `source` and a `destination`.
// `source` is the "current" main texture and you _must_ write into
// `destination` because calling `post_process_write()` on the
// [`ViewTarget`] will internally flip the [`ViewTarget`]'s main
// texture to the `destination` texture. Failing to do so will cause
// the current main texture information to be lost.
let post_process = view_target.post_process_write();
// The bind_group gets created each frame.
//
// Normally, you would create a bind_group in the Queue set, but this doesn't work with the post_process_write().
// The reason it doesn't work is because each post_process_write will alternate the source/destination.
// The only way to have the correct source/destination for the bind_group is to make sure you get it during the node execution.
let bind_group = render_context
.render_device()
.create_bind_group(&BindGroupDescriptor {
label: Some("post_process_bind_group"),
layout: &post_process_pipeline.layout,
// It's important for this to match the BindGroupLayout defined in the PostProcessPipeline
entries: &[
BindGroupEntry {
binding: 0,
// Make sure to use the source view
resource: BindingResource::TextureView(post_process.source),
},
BindGroupEntry {
binding: 1,
// Use the sampler created for the pipeline
resource: BindingResource::Sampler(&post_process_pipeline.sampler),
},
BindGroupEntry {
binding: 2,
// Set the settings binding
resource: settings_binding.clone(),
},
],
});
// Begin the render pass
let mut render_pass = render_context.begin_tracked_render_pass(RenderPassDescriptor {
label: Some("post_process_pass"),
color_attachments: &[Some(RenderPassColorAttachment {
// We need to specify the post process destination view here
// to make sure we write to the appropriate texture.
view: post_process.destination,
resolve_target: None,
ops: Operations::default(),
})],
depth_stencil_attachment: None,
});
// This is mostly just wgpu boilerplate for drawing a fullscreen triangle,
// using the pipeline/bind_group created above
render_pass.set_render_pipeline(pipeline);
render_pass.set_bind_group(0, &bind_group, &[]);
render_pass.draw(0..3, 0..1);
Ok(())
}
}
// This contains global data used by the render pipeline. This will be created once on startup.
#[derive(Resource)]
struct PostProcessPipeline {
layout: BindGroupLayout,
sampler: Sampler,
pipeline_id: CachedRenderPipelineId,
}
impl FromWorld for PostProcessPipeline {
fn from_world(world: &mut World) -> Self {
let render_device = world.resource::<RenderDevice>();
// We need to define the bind group layout used for our pipeline
let layout = render_device.create_bind_group_layout(&BindGroupLayoutDescriptor {
label: Some("post_process_bind_group_layout"),
entries: &[
// The screen texture
BindGroupLayoutEntry {
binding: 0,
visibility: ShaderStages::FRAGMENT,
ty: BindingType::Texture {
sample_type: TextureSampleType::Float { filterable: true },
view_dimension: TextureViewDimension::D2,
multisampled: false,
},
count: None,
},
// The sampler that will be used to sample the screen texture
BindGroupLayoutEntry {
binding: 1,
visibility: ShaderStages::FRAGMENT,
ty: BindingType::Sampler(SamplerBindingType::Filtering),
count: None,
},
// The settings uniform that will control the effect
BindGroupLayoutEntry {
binding: 2,
visibility: ShaderStages::FRAGMENT,
ty: BindingType::Buffer {
ty: bevy::render::render_resource::BufferBindingType::Uniform,
has_dynamic_offset: false,
min_binding_size: Some(PostProcessSettings::min_size()),
},
count: None,
},
],
});
// We can create the sampler here since it won't change at runtime and doesn't depend on the view
let sampler = render_device.create_sampler(&SamplerDescriptor::default());
// Get the shader handle
let shader = world
.resource::<AssetServer>()
.load("shaders/post_processing.wgsl");
let pipeline_id = world
.resource_mut::<PipelineCache>()
// This will add the pipeline to the cache and queue it's creation
.queue_render_pipeline(RenderPipelineDescriptor {
label: Some("post_process_pipeline".into()),
layout: vec![layout.clone()],
// This will setup a fullscreen triangle for the vertex state
vertex: fullscreen_shader_vertex_state(),
fragment: Some(FragmentState {
shader,
shader_defs: vec![],
// Make sure this matches the entry point of your shader.
// It can be anything as long as it matches here and in the shader.
entry_point: "fragment".into(),
targets: vec![Some(ColorTargetState {
format: TextureFormat::bevy_default(),
blend: None,
write_mask: ColorWrites::ALL,
})],
}),
// All of the following properties are not important for this effect so just use the default values.
// This struct doesn't have the Default trait implemented because not all field can have a default value.
primitive: PrimitiveState::default(),
depth_stencil: None,
multisample: MultisampleState::default(),
push_constant_ranges: vec![],
});
Self {
layout,
sampler,
pipeline_id,
}
}
}
// This is the component that will get passed to the shader
#[derive(Component, Default, Clone, Copy, ExtractComponent, ShaderType)]
struct PostProcessSettings {
intensity: f32,
// WebGL2 structs must be 16 byte aligned.
#[cfg(feature = "webgl2")]
_webgl2_padding: Vec3,
}
/// Set up a simple 3D scene
fn setup(
mut commands: Commands,
mut meshes: ResMut<Assets<Mesh>>,
mut materials: ResMut<Assets<StandardMaterial>>,
) {
// camera
commands.spawn((
Camera3dBundle {
transform: Transform::from_translation(Vec3::new(0.0, 0.0, 5.0))
.looking_at(Vec3::default(), Vec3::Y),
camera_3d: Camera3d {
clear_color: ClearColorConfig::Custom(Color::WHITE),
..default()
},
..default()
},
// Add the setting to the camera.
// This component is also used to determine on which camera to run the post processing effect.
PostProcessSettings {
intensity: 0.02,
..default()
},
));
// cube
commands.spawn((
PbrBundle {
mesh: meshes.add(Mesh::from(shape::Cube { size: 1.0 })),
material: materials.add(Color::rgb(0.8, 0.7, 0.6).into()),
transform: Transform::from_xyz(0.0, 0.5, 0.0),
..default()
},
Rotates,
));
// light
commands.spawn(PointLightBundle {
transform: Transform::from_translation(Vec3::new(0.0, 0.0, 10.0)),
..default()
});
}
#[derive(Component)]
struct Rotates;
/// Rotates any entity around the x and y axis
fn rotate(time: Res<Time>, mut query: Query<&mut Transform, With<Rotates>>) {
for mut transform in &mut query {
transform.rotate_x(0.55 * time.delta_seconds());
transform.rotate_z(0.15 * time.delta_seconds());
}
}
// Change the intensity over time to show that the effect is controlled from the main world
fn update_settings(mut settings: Query<&mut PostProcessSettings>, time: Res<Time>) {
for mut setting in &mut settings {
let mut intensity = time.elapsed_seconds().sin();
// Make it loop periodically
intensity = intensity.sin();
// Remap it to 0..1 because the intensity can't be negative
intensity = intensity * 0.5 + 0.5;
// Scale it to a more reasonable level
intensity *= 0.015;
// Set the intensity. This will then be extracted to the render world and uploaded to the gpu automatically.
setting.intensity = intensity;
}
}