bevy/crates/bevy_sprite/src/render/mod.rs
Tygyh 7b8305e5b4
Remove unnecessary parens (#11075)
# Objective

- Increase readability.

## Solution

- Remove unnecessary parens.
2023-12-24 17:43:01 +00:00

845 lines
31 KiB
Rust

use std::ops::Range;
use crate::{
texture_atlas::{TextureAtlas, TextureAtlasSprite},
Sprite, SPRITE_SHADER_HANDLE,
};
use bevy_asset::{AssetEvent, AssetId, Assets, Handle};
use bevy_core_pipeline::{
core_2d::Transparent2d,
tonemapping::{DebandDither, Tonemapping},
};
use bevy_ecs::{
prelude::*,
system::{lifetimeless::*, SystemParamItem, SystemState},
};
use bevy_math::{Affine3A, Quat, Rect, Vec2, Vec4};
use bevy_render::{
color::Color,
render_asset::RenderAssets,
render_phase::{
DrawFunctions, PhaseItem, RenderCommand, RenderCommandResult, RenderPhase, SetItemPipeline,
TrackedRenderPass,
},
render_resource::{
binding_types::{sampler, texture_2d, uniform_buffer},
BindGroupEntries, *,
},
renderer::{RenderDevice, RenderQueue},
texture::{
BevyDefault, DefaultImageSampler, GpuImage, Image, ImageSampler, TextureFormatPixelInfo,
},
view::{
ExtractedView, Msaa, ViewTarget, ViewUniform, ViewUniformOffset, ViewUniforms,
ViewVisibility, VisibleEntities,
},
Extract,
};
use bevy_transform::components::GlobalTransform;
use bevy_utils::{EntityHashMap, FloatOrd, HashMap};
use bytemuck::{Pod, Zeroable};
use fixedbitset::FixedBitSet;
#[derive(Resource)]
pub struct SpritePipeline {
view_layout: BindGroupLayout,
material_layout: BindGroupLayout,
pub dummy_white_gpu_image: GpuImage,
}
impl FromWorld for SpritePipeline {
fn from_world(world: &mut World) -> Self {
let mut system_state: SystemState<(
Res<RenderDevice>,
Res<DefaultImageSampler>,
Res<RenderQueue>,
)> = SystemState::new(world);
let (render_device, default_sampler, render_queue) = system_state.get_mut(world);
let view_layout = render_device.create_bind_group_layout(
"sprite_view_layout",
&BindGroupLayoutEntries::single(
ShaderStages::VERTEX_FRAGMENT,
uniform_buffer::<ViewUniform>(true),
),
);
let material_layout = render_device.create_bind_group_layout(
"sprite_material_layout",
&BindGroupLayoutEntries::sequential(
ShaderStages::FRAGMENT,
(
texture_2d(TextureSampleType::Float { filterable: true }),
sampler(SamplerBindingType::Filtering),
),
),
);
let dummy_white_gpu_image = {
let image = Image::default();
let texture = render_device.create_texture(&image.texture_descriptor);
let sampler = match image.sampler {
ImageSampler::Default => (**default_sampler).clone(),
ImageSampler::Descriptor(ref descriptor) => {
render_device.create_sampler(&descriptor.as_wgpu())
}
};
let format_size = image.texture_descriptor.format.pixel_size();
render_queue.write_texture(
texture.as_image_copy(),
&image.data,
ImageDataLayout {
offset: 0,
bytes_per_row: Some(image.width() * format_size as u32),
rows_per_image: None,
},
image.texture_descriptor.size,
);
let texture_view = texture.create_view(&TextureViewDescriptor::default());
GpuImage {
texture,
texture_view,
texture_format: image.texture_descriptor.format,
sampler,
size: image.size_f32(),
mip_level_count: image.texture_descriptor.mip_level_count,
}
};
SpritePipeline {
view_layout,
material_layout,
dummy_white_gpu_image,
}
}
}
bitflags::bitflags! {
#[derive(Clone, Copy, Debug, PartialEq, Eq, Hash)]
#[repr(transparent)]
// NOTE: Apparently quadro drivers support up to 64x MSAA.
// MSAA uses the highest 3 bits for the MSAA log2(sample count) to support up to 128x MSAA.
pub struct SpritePipelineKey: u32 {
const NONE = 0;
const COLORED = 1 << 0;
const HDR = 1 << 1;
const TONEMAP_IN_SHADER = 1 << 2;
const DEBAND_DITHER = 1 << 3;
const MSAA_RESERVED_BITS = Self::MSAA_MASK_BITS << Self::MSAA_SHIFT_BITS;
const TONEMAP_METHOD_RESERVED_BITS = Self::TONEMAP_METHOD_MASK_BITS << Self::TONEMAP_METHOD_SHIFT_BITS;
const TONEMAP_METHOD_NONE = 0 << Self::TONEMAP_METHOD_SHIFT_BITS;
const TONEMAP_METHOD_REINHARD = 1 << Self::TONEMAP_METHOD_SHIFT_BITS;
const TONEMAP_METHOD_REINHARD_LUMINANCE = 2 << Self::TONEMAP_METHOD_SHIFT_BITS;
const TONEMAP_METHOD_ACES_FITTED = 3 << Self::TONEMAP_METHOD_SHIFT_BITS;
const TONEMAP_METHOD_AGX = 4 << Self::TONEMAP_METHOD_SHIFT_BITS;
const TONEMAP_METHOD_SOMEWHAT_BORING_DISPLAY_TRANSFORM = 5 << Self::TONEMAP_METHOD_SHIFT_BITS;
const TONEMAP_METHOD_TONY_MC_MAPFACE = 6 << Self::TONEMAP_METHOD_SHIFT_BITS;
const TONEMAP_METHOD_BLENDER_FILMIC = 7 << Self::TONEMAP_METHOD_SHIFT_BITS;
}
}
impl SpritePipelineKey {
const MSAA_MASK_BITS: u32 = 0b111;
const MSAA_SHIFT_BITS: u32 = 32 - Self::MSAA_MASK_BITS.count_ones();
const TONEMAP_METHOD_MASK_BITS: u32 = 0b111;
const TONEMAP_METHOD_SHIFT_BITS: u32 =
Self::MSAA_SHIFT_BITS - Self::TONEMAP_METHOD_MASK_BITS.count_ones();
#[inline]
pub const fn from_msaa_samples(msaa_samples: u32) -> Self {
let msaa_bits =
(msaa_samples.trailing_zeros() & Self::MSAA_MASK_BITS) << Self::MSAA_SHIFT_BITS;
Self::from_bits_retain(msaa_bits)
}
#[inline]
pub const fn msaa_samples(&self) -> u32 {
1 << ((self.bits() >> Self::MSAA_SHIFT_BITS) & Self::MSAA_MASK_BITS)
}
#[inline]
pub const fn from_colored(colored: bool) -> Self {
if colored {
SpritePipelineKey::COLORED
} else {
SpritePipelineKey::NONE
}
}
#[inline]
pub const fn from_hdr(hdr: bool) -> Self {
if hdr {
SpritePipelineKey::HDR
} else {
SpritePipelineKey::NONE
}
}
}
impl SpecializedRenderPipeline for SpritePipeline {
type Key = SpritePipelineKey;
fn specialize(&self, key: Self::Key) -> RenderPipelineDescriptor {
let mut shader_defs = Vec::new();
if key.contains(SpritePipelineKey::TONEMAP_IN_SHADER) {
shader_defs.push("TONEMAP_IN_SHADER".into());
let method = key.intersection(SpritePipelineKey::TONEMAP_METHOD_RESERVED_BITS);
if method == SpritePipelineKey::TONEMAP_METHOD_NONE {
shader_defs.push("TONEMAP_METHOD_NONE".into());
} else if method == SpritePipelineKey::TONEMAP_METHOD_REINHARD {
shader_defs.push("TONEMAP_METHOD_REINHARD".into());
} else if method == SpritePipelineKey::TONEMAP_METHOD_REINHARD_LUMINANCE {
shader_defs.push("TONEMAP_METHOD_REINHARD_LUMINANCE".into());
} else if method == SpritePipelineKey::TONEMAP_METHOD_ACES_FITTED {
shader_defs.push("TONEMAP_METHOD_ACES_FITTED".into());
} else if method == SpritePipelineKey::TONEMAP_METHOD_AGX {
shader_defs.push("TONEMAP_METHOD_AGX".into());
} else if method == SpritePipelineKey::TONEMAP_METHOD_SOMEWHAT_BORING_DISPLAY_TRANSFORM
{
shader_defs.push("TONEMAP_METHOD_SOMEWHAT_BORING_DISPLAY_TRANSFORM".into());
} else if method == SpritePipelineKey::TONEMAP_METHOD_BLENDER_FILMIC {
shader_defs.push("TONEMAP_METHOD_BLENDER_FILMIC".into());
} else if method == SpritePipelineKey::TONEMAP_METHOD_TONY_MC_MAPFACE {
shader_defs.push("TONEMAP_METHOD_TONY_MC_MAPFACE".into());
}
// Debanding is tied to tonemapping in the shader, cannot run without it.
if key.contains(SpritePipelineKey::DEBAND_DITHER) {
shader_defs.push("DEBAND_DITHER".into());
}
}
let format = match key.contains(SpritePipelineKey::HDR) {
true => ViewTarget::TEXTURE_FORMAT_HDR,
false => TextureFormat::bevy_default(),
};
let instance_rate_vertex_buffer_layout = VertexBufferLayout {
array_stride: 80,
step_mode: VertexStepMode::Instance,
attributes: vec![
// @location(0) i_model_transpose_col0: vec4<f32>,
VertexAttribute {
format: VertexFormat::Float32x4,
offset: 0,
shader_location: 0,
},
// @location(1) i_model_transpose_col1: vec4<f32>,
VertexAttribute {
format: VertexFormat::Float32x4,
offset: 16,
shader_location: 1,
},
// @location(2) i_model_transpose_col2: vec4<f32>,
VertexAttribute {
format: VertexFormat::Float32x4,
offset: 32,
shader_location: 2,
},
// @location(3) i_color: vec4<f32>,
VertexAttribute {
format: VertexFormat::Float32x4,
offset: 48,
shader_location: 3,
},
// @location(4) i_uv_offset_scale: vec4<f32>,
VertexAttribute {
format: VertexFormat::Float32x4,
offset: 64,
shader_location: 4,
},
],
};
RenderPipelineDescriptor {
vertex: VertexState {
shader: SPRITE_SHADER_HANDLE,
entry_point: "vertex".into(),
shader_defs: shader_defs.clone(),
buffers: vec![instance_rate_vertex_buffer_layout],
},
fragment: Some(FragmentState {
shader: SPRITE_SHADER_HANDLE,
shader_defs,
entry_point: "fragment".into(),
targets: vec![Some(ColorTargetState {
format,
blend: Some(BlendState::ALPHA_BLENDING),
write_mask: ColorWrites::ALL,
})],
}),
layout: vec![self.view_layout.clone(), self.material_layout.clone()],
primitive: PrimitiveState {
front_face: FrontFace::Ccw,
cull_mode: None,
unclipped_depth: false,
polygon_mode: PolygonMode::Fill,
conservative: false,
topology: PrimitiveTopology::TriangleList,
strip_index_format: None,
},
depth_stencil: None,
multisample: MultisampleState {
count: key.msaa_samples(),
mask: !0,
alpha_to_coverage_enabled: false,
},
label: Some("sprite_pipeline".into()),
push_constant_ranges: Vec::new(),
}
}
}
pub struct ExtractedSprite {
pub transform: GlobalTransform,
pub color: Color,
/// Select an area of the texture
pub rect: Option<Rect>,
/// Change the on-screen size of the sprite
pub custom_size: Option<Vec2>,
/// Asset ID of the [`Image`] of this sprite
/// PERF: storing an `AssetId` instead of `Handle<Image>` enables some optimizations (`ExtractedSprite` becomes `Copy` and doesn't need to be dropped)
pub image_handle_id: AssetId<Image>,
pub flip_x: bool,
pub flip_y: bool,
pub anchor: Vec2,
/// For cases where additional ExtractedSprites are created during extraction, this stores the
/// entity that caused that creation for use in determining visibility.
pub original_entity: Option<Entity>,
}
#[derive(Resource, Default)]
pub struct ExtractedSprites {
pub sprites: EntityHashMap<Entity, ExtractedSprite>,
}
#[derive(Resource, Default)]
pub struct SpriteAssetEvents {
pub images: Vec<AssetEvent<Image>>,
}
pub fn extract_sprite_events(
mut events: ResMut<SpriteAssetEvents>,
mut image_events: Extract<EventReader<AssetEvent<Image>>>,
) {
let SpriteAssetEvents { ref mut images } = *events;
images.clear();
for event in image_events.read() {
images.push(*event);
}
}
pub fn extract_sprites(
mut extracted_sprites: ResMut<ExtractedSprites>,
texture_atlases: Extract<Res<Assets<TextureAtlas>>>,
sprite_query: Extract<
Query<(
Entity,
&ViewVisibility,
&Sprite,
&GlobalTransform,
&Handle<Image>,
)>,
>,
atlas_query: Extract<
Query<(
Entity,
&ViewVisibility,
&TextureAtlasSprite,
&GlobalTransform,
&Handle<TextureAtlas>,
)>,
>,
) {
extracted_sprites.sprites.clear();
for (entity, view_visibility, sprite, transform, handle) in sprite_query.iter() {
if !view_visibility.get() {
continue;
}
// PERF: we don't check in this function that the `Image` asset is ready, since it should be in most cases and hashing the handle is expensive
extracted_sprites.sprites.insert(
entity,
ExtractedSprite {
color: sprite.color,
transform: *transform,
rect: sprite.rect,
// Pass the custom size
custom_size: sprite.custom_size,
flip_x: sprite.flip_x,
flip_y: sprite.flip_y,
image_handle_id: handle.id(),
anchor: sprite.anchor.as_vec(),
original_entity: None,
},
);
}
for (entity, view_visibility, atlas_sprite, transform, texture_atlas_handle) in
atlas_query.iter()
{
if !view_visibility.get() {
continue;
}
if let Some(texture_atlas) = texture_atlases.get(texture_atlas_handle) {
let rect = Some(
*texture_atlas
.textures
.get(atlas_sprite.index)
.unwrap_or_else(|| {
panic!(
"Sprite index {:?} does not exist for texture atlas handle {:?}.",
atlas_sprite.index,
texture_atlas_handle.id(),
)
}),
);
extracted_sprites.sprites.insert(
entity,
ExtractedSprite {
color: atlas_sprite.color,
transform: *transform,
// Select the area in the texture atlas
rect,
// Pass the custom size
custom_size: atlas_sprite.custom_size,
flip_x: atlas_sprite.flip_x,
flip_y: atlas_sprite.flip_y,
image_handle_id: texture_atlas.texture.id(),
anchor: atlas_sprite.anchor.as_vec(),
original_entity: None,
},
);
}
}
}
#[repr(C)]
#[derive(Copy, Clone, Pod, Zeroable)]
struct SpriteInstance {
// Affine 4x3 transposed to 3x4
pub i_model_transpose: [Vec4; 3],
pub i_color: [f32; 4],
pub i_uv_offset_scale: [f32; 4],
}
impl SpriteInstance {
#[inline]
fn from(transform: &Affine3A, color: &Color, uv_offset_scale: &Vec4) -> Self {
let transpose_model_3x3 = transform.matrix3.transpose();
Self {
i_model_transpose: [
transpose_model_3x3.x_axis.extend(transform.translation.x),
transpose_model_3x3.y_axis.extend(transform.translation.y),
transpose_model_3x3.z_axis.extend(transform.translation.z),
],
i_color: color.as_linear_rgba_f32(),
i_uv_offset_scale: uv_offset_scale.to_array(),
}
}
}
#[derive(Resource)]
pub struct SpriteMeta {
view_bind_group: Option<BindGroup>,
sprite_index_buffer: BufferVec<u32>,
sprite_instance_buffer: BufferVec<SpriteInstance>,
}
impl Default for SpriteMeta {
fn default() -> Self {
Self {
view_bind_group: None,
sprite_index_buffer: BufferVec::<u32>::new(BufferUsages::INDEX),
sprite_instance_buffer: BufferVec::<SpriteInstance>::new(BufferUsages::VERTEX),
}
}
}
#[derive(Component, PartialEq, Eq, Clone)]
pub struct SpriteBatch {
image_handle_id: AssetId<Image>,
range: Range<u32>,
}
#[derive(Resource, Default)]
pub struct ImageBindGroups {
values: HashMap<AssetId<Image>, BindGroup>,
}
#[allow(clippy::too_many_arguments)]
pub fn queue_sprites(
mut view_entities: Local<FixedBitSet>,
draw_functions: Res<DrawFunctions<Transparent2d>>,
sprite_pipeline: Res<SpritePipeline>,
mut pipelines: ResMut<SpecializedRenderPipelines<SpritePipeline>>,
pipeline_cache: Res<PipelineCache>,
msaa: Res<Msaa>,
extracted_sprites: Res<ExtractedSprites>,
mut views: Query<(
&mut RenderPhase<Transparent2d>,
&VisibleEntities,
&ExtractedView,
Option<&Tonemapping>,
Option<&DebandDither>,
)>,
) {
let msaa_key = SpritePipelineKey::from_msaa_samples(msaa.samples());
let draw_sprite_function = draw_functions.read().id::<DrawSprite>();
for (mut transparent_phase, visible_entities, view, tonemapping, dither) in &mut views {
let mut view_key = SpritePipelineKey::from_hdr(view.hdr) | msaa_key;
if !view.hdr {
if let Some(tonemapping) = tonemapping {
view_key |= SpritePipelineKey::TONEMAP_IN_SHADER;
view_key |= match tonemapping {
Tonemapping::None => SpritePipelineKey::TONEMAP_METHOD_NONE,
Tonemapping::Reinhard => SpritePipelineKey::TONEMAP_METHOD_REINHARD,
Tonemapping::ReinhardLuminance => {
SpritePipelineKey::TONEMAP_METHOD_REINHARD_LUMINANCE
}
Tonemapping::AcesFitted => SpritePipelineKey::TONEMAP_METHOD_ACES_FITTED,
Tonemapping::AgX => SpritePipelineKey::TONEMAP_METHOD_AGX,
Tonemapping::SomewhatBoringDisplayTransform => {
SpritePipelineKey::TONEMAP_METHOD_SOMEWHAT_BORING_DISPLAY_TRANSFORM
}
Tonemapping::TonyMcMapface => SpritePipelineKey::TONEMAP_METHOD_TONY_MC_MAPFACE,
Tonemapping::BlenderFilmic => SpritePipelineKey::TONEMAP_METHOD_BLENDER_FILMIC,
};
}
if let Some(DebandDither::Enabled) = dither {
view_key |= SpritePipelineKey::DEBAND_DITHER;
}
}
let pipeline = pipelines.specialize(
&pipeline_cache,
&sprite_pipeline,
view_key | SpritePipelineKey::from_colored(false),
);
let colored_pipeline = pipelines.specialize(
&pipeline_cache,
&sprite_pipeline,
view_key | SpritePipelineKey::from_colored(true),
);
view_entities.clear();
view_entities.extend(visible_entities.entities.iter().map(|e| e.index() as usize));
transparent_phase
.items
.reserve(extracted_sprites.sprites.len());
for (entity, extracted_sprite) in extracted_sprites.sprites.iter() {
let index = extracted_sprite.original_entity.unwrap_or(*entity).index();
if !view_entities.contains(index as usize) {
continue;
}
// These items will be sorted by depth with other phase items
let sort_key = FloatOrd(extracted_sprite.transform.translation().z);
// Add the item to the render phase
if extracted_sprite.color != Color::WHITE {
transparent_phase.add(Transparent2d {
draw_function: draw_sprite_function,
pipeline: colored_pipeline,
entity: *entity,
sort_key,
// batch_range and dynamic_offset will be calculated in prepare_sprites
batch_range: 0..0,
dynamic_offset: None,
});
} else {
transparent_phase.add(Transparent2d {
draw_function: draw_sprite_function,
pipeline,
entity: *entity,
sort_key,
// batch_range and dynamic_offset will be calculated in prepare_sprites
batch_range: 0..0,
dynamic_offset: None,
});
}
}
}
}
#[allow(clippy::too_many_arguments)]
pub fn prepare_sprites(
mut commands: Commands,
mut previous_len: Local<usize>,
render_device: Res<RenderDevice>,
render_queue: Res<RenderQueue>,
mut sprite_meta: ResMut<SpriteMeta>,
view_uniforms: Res<ViewUniforms>,
sprite_pipeline: Res<SpritePipeline>,
mut image_bind_groups: ResMut<ImageBindGroups>,
gpu_images: Res<RenderAssets<Image>>,
extracted_sprites: Res<ExtractedSprites>,
mut phases: Query<&mut RenderPhase<Transparent2d>>,
events: Res<SpriteAssetEvents>,
) {
// If an image has changed, the GpuImage has (probably) changed
for event in &events.images {
match event {
AssetEvent::Added {..} |
// images don't have dependencies
AssetEvent::LoadedWithDependencies { .. } => {}
AssetEvent::Modified { id } | AssetEvent::Removed { id } => {
image_bind_groups.values.remove(id);
}
};
}
if let Some(view_binding) = view_uniforms.uniforms.binding() {
let mut batches: Vec<(Entity, SpriteBatch)> = Vec::with_capacity(*previous_len);
// Clear the sprite instances
sprite_meta.sprite_instance_buffer.clear();
sprite_meta.view_bind_group = Some(render_device.create_bind_group(
"sprite_view_bind_group",
&sprite_pipeline.view_layout,
&BindGroupEntries::single(view_binding),
));
// Index buffer indices
let mut index = 0;
let image_bind_groups = &mut *image_bind_groups;
for mut transparent_phase in &mut phases {
let mut batch_item_index = 0;
let mut batch_image_size = Vec2::ZERO;
let mut batch_image_handle = AssetId::invalid();
// Iterate through the phase items and detect when successive sprites that can be batched.
// Spawn an entity with a `SpriteBatch` component for each possible batch.
// Compatible items share the same entity.
for item_index in 0..transparent_phase.items.len() {
let item = &transparent_phase.items[item_index];
let Some(extracted_sprite) = extracted_sprites.sprites.get(&item.entity) else {
// If there is a phase item that is not a sprite, then we must start a new
// batch to draw the other phase item(s) and to respect draw order. This can be
// done by invalidating the batch_image_handle
batch_image_handle = AssetId::invalid();
continue;
};
let batch_image_changed = batch_image_handle != extracted_sprite.image_handle_id;
if batch_image_changed {
let Some(gpu_image) = gpu_images.get(extracted_sprite.image_handle_id) else {
continue;
};
batch_image_size = Vec2::new(gpu_image.size.x, gpu_image.size.y);
batch_image_handle = extracted_sprite.image_handle_id;
image_bind_groups
.values
.entry(batch_image_handle)
.or_insert_with(|| {
render_device.create_bind_group(
"sprite_material_bind_group",
&sprite_pipeline.material_layout,
&BindGroupEntries::sequential((
&gpu_image.texture_view,
&gpu_image.sampler,
)),
)
});
}
// By default, the size of the quad is the size of the texture
let mut quad_size = batch_image_size;
// Calculate vertex data for this item
let mut uv_offset_scale: Vec4;
// If a rect is specified, adjust UVs and the size of the quad
if let Some(rect) = extracted_sprite.rect {
let rect_size = rect.size();
uv_offset_scale = Vec4::new(
rect.min.x / batch_image_size.x,
rect.max.y / batch_image_size.y,
rect_size.x / batch_image_size.x,
-rect_size.y / batch_image_size.y,
);
quad_size = rect_size;
} else {
uv_offset_scale = Vec4::new(0.0, 1.0, 1.0, -1.0);
}
if extracted_sprite.flip_x {
uv_offset_scale.x += uv_offset_scale.z;
uv_offset_scale.z *= -1.0;
}
if extracted_sprite.flip_y {
uv_offset_scale.y += uv_offset_scale.w;
uv_offset_scale.w *= -1.0;
}
// Override the size if a custom one is specified
if let Some(custom_size) = extracted_sprite.custom_size {
quad_size = custom_size;
}
let transform = extracted_sprite.transform.affine()
* Affine3A::from_scale_rotation_translation(
quad_size.extend(1.0),
Quat::IDENTITY,
(quad_size * (-extracted_sprite.anchor - Vec2::splat(0.5))).extend(0.0),
);
// Store the vertex data and add the item to the render phase
sprite_meta
.sprite_instance_buffer
.push(SpriteInstance::from(
&transform,
&extracted_sprite.color,
&uv_offset_scale,
));
if batch_image_changed {
batch_item_index = item_index;
batches.push((
item.entity,
SpriteBatch {
image_handle_id: batch_image_handle,
range: index..index,
},
));
}
transparent_phase.items[batch_item_index]
.batch_range_mut()
.end += 1;
batches.last_mut().unwrap().1.range.end += 1;
index += 1;
}
}
sprite_meta
.sprite_instance_buffer
.write_buffer(&render_device, &render_queue);
if sprite_meta.sprite_index_buffer.len() != 6 {
sprite_meta.sprite_index_buffer.clear();
// NOTE: This code is creating 6 indices pointing to 4 vertices.
// The vertices form the corners of a quad based on their two least significant bits.
// 10 11
//
// 00 01
// The sprite shader can then use the two least significant bits as the vertex index.
// The rest of the properties to transform the vertex positions and UVs (which are
// implicit) are baked into the instance transform, and UV offset and scale.
// See bevy_sprite/src/render/sprite.wgsl for the details.
sprite_meta.sprite_index_buffer.push(2);
sprite_meta.sprite_index_buffer.push(0);
sprite_meta.sprite_index_buffer.push(1);
sprite_meta.sprite_index_buffer.push(1);
sprite_meta.sprite_index_buffer.push(3);
sprite_meta.sprite_index_buffer.push(2);
sprite_meta
.sprite_index_buffer
.write_buffer(&render_device, &render_queue);
}
*previous_len = batches.len();
commands.insert_or_spawn_batch(batches);
}
}
/// [`RenderCommand`] for sprite rendering.
pub type DrawSprite = (
SetItemPipeline,
SetSpriteViewBindGroup<0>,
SetSpriteTextureBindGroup<1>,
DrawSpriteBatch,
);
pub struct SetSpriteViewBindGroup<const I: usize>;
impl<P: PhaseItem, const I: usize> RenderCommand<P> for SetSpriteViewBindGroup<I> {
type Param = SRes<SpriteMeta>;
type ViewData = Read<ViewUniformOffset>;
type ItemData = ();
fn render<'w>(
_item: &P,
view_uniform: &'_ ViewUniformOffset,
_entity: (),
sprite_meta: SystemParamItem<'w, '_, Self::Param>,
pass: &mut TrackedRenderPass<'w>,
) -> RenderCommandResult {
pass.set_bind_group(
I,
sprite_meta.into_inner().view_bind_group.as_ref().unwrap(),
&[view_uniform.offset],
);
RenderCommandResult::Success
}
}
pub struct SetSpriteTextureBindGroup<const I: usize>;
impl<P: PhaseItem, const I: usize> RenderCommand<P> for SetSpriteTextureBindGroup<I> {
type Param = SRes<ImageBindGroups>;
type ViewData = ();
type ItemData = Read<SpriteBatch>;
fn render<'w>(
_item: &P,
_view: (),
batch: &'_ SpriteBatch,
image_bind_groups: SystemParamItem<'w, '_, Self::Param>,
pass: &mut TrackedRenderPass<'w>,
) -> RenderCommandResult {
let image_bind_groups = image_bind_groups.into_inner();
pass.set_bind_group(
I,
image_bind_groups
.values
.get(&batch.image_handle_id)
.unwrap(),
&[],
);
RenderCommandResult::Success
}
}
pub struct DrawSpriteBatch;
impl<P: PhaseItem> RenderCommand<P> for DrawSpriteBatch {
type Param = SRes<SpriteMeta>;
type ViewData = ();
type ItemData = Read<SpriteBatch>;
fn render<'w>(
_item: &P,
_view: (),
batch: &'_ SpriteBatch,
sprite_meta: SystemParamItem<'w, '_, Self::Param>,
pass: &mut TrackedRenderPass<'w>,
) -> RenderCommandResult {
let sprite_meta = sprite_meta.into_inner();
pass.set_index_buffer(
sprite_meta.sprite_index_buffer.buffer().unwrap().slice(..),
0,
IndexFormat::Uint32,
);
pass.set_vertex_buffer(
0,
sprite_meta
.sprite_instance_buffer
.buffer()
.unwrap()
.slice(..),
);
pass.draw_indexed(0..6, 0, batch.range.clone());
RenderCommandResult::Success
}
}