mirror of
https://github.com/bevyengine/bevy
synced 2025-01-09 03:38:55 +00:00
efda7f3f9c
Takes the first two commits from #15375 and adds suggestions from this comment: https://github.com/bevyengine/bevy/pull/15375#issuecomment-2366968300 See #15375 for more reasoning/motivation. ## Rebasing (rerunning) ```rust git switch simpler-lint-fixes git reset --hard main cargo fmt --all -- --unstable-features --config normalize_comments=true,imports_granularity=Crate cargo fmt --all git add --update git commit --message "rustfmt" cargo clippy --workspace --all-targets --all-features --fix cargo fmt --all -- --unstable-features --config normalize_comments=true,imports_granularity=Crate cargo fmt --all git add --update git commit --message "clippy" git cherry-pick e6c0b94f6795222310fb812fa5c4512661fc7887 ```
471 lines
13 KiB
Rust
471 lines
13 KiB
Rust
//! This mod re-exports the correct versions of floating-point operations with
|
|
//! unspecified precision in the standard library depending on whether the `libm`
|
|
//! crate feature is enabled.
|
|
//!
|
|
//! All the functions here are named according to their versions in the standard
|
|
//! library.
|
|
|
|
#![allow(dead_code)]
|
|
#![allow(clippy::disallowed_methods)]
|
|
|
|
// Note: There are some Rust methods with unspecified precision without a `libm`
|
|
// equivalent:
|
|
// - `f32::powi` (integer powers)
|
|
// - `f32::log` (logarithm with specified base)
|
|
// - `f32::abs_sub` (actually unsure if `libm` has this, but don't use it regardless)
|
|
//
|
|
// Additionally, the following nightly API functions are not presently integrated
|
|
// into this, but they would be candidates once standardized:
|
|
// - `f32::gamma`
|
|
// - `f32::ln_gamma`
|
|
|
|
#[cfg(not(feature = "libm"))]
|
|
mod std_ops {
|
|
|
|
/// Raises a number to a floating point power.
|
|
///
|
|
/// Precision is specified when the `libm` feature is enabled.
|
|
#[inline(always)]
|
|
pub fn powf(x: f32, y: f32) -> f32 {
|
|
f32::powf(x, y)
|
|
}
|
|
|
|
/// Returns `e^(self)`, (the exponential function).
|
|
///
|
|
/// Precision is specified when the `libm` feature is enabled.
|
|
#[inline(always)]
|
|
pub fn exp(x: f32) -> f32 {
|
|
f32::exp(x)
|
|
}
|
|
|
|
/// Returns `2^(self)`.
|
|
///
|
|
/// Precision is specified when the `libm` feature is enabled.
|
|
#[inline(always)]
|
|
pub fn exp2(x: f32) -> f32 {
|
|
f32::exp2(x)
|
|
}
|
|
|
|
/// Returns the natural logarithm of the number.
|
|
///
|
|
/// Precision is specified when the `libm` feature is enabled.
|
|
#[inline(always)]
|
|
pub fn ln(x: f32) -> f32 {
|
|
f32::ln(x)
|
|
}
|
|
|
|
/// Returns the base 2 logarithm of the number.
|
|
///
|
|
/// Precision is specified when the `libm` feature is enabled.
|
|
#[inline(always)]
|
|
pub fn log2(x: f32) -> f32 {
|
|
f32::log2(x)
|
|
}
|
|
|
|
/// Returns the base 10 logarithm of the number.
|
|
///
|
|
/// Precision is specified when the `libm` feature is enabled.
|
|
#[inline(always)]
|
|
pub fn log10(x: f32) -> f32 {
|
|
f32::log10(x)
|
|
}
|
|
|
|
/// Returns the cube root of a number.
|
|
///
|
|
/// Precision is specified when the `libm` feature is enabled.
|
|
#[inline(always)]
|
|
pub fn cbrt(x: f32) -> f32 {
|
|
f32::cbrt(x)
|
|
}
|
|
|
|
/// Compute the distance between the origin and a point `(x, y)` on the Euclidean plane.
|
|
/// Equivalently, compute the length of the hypotenuse of a right-angle triangle with other sides having length `x.abs()` and `y.abs()`.
|
|
///
|
|
/// Precision is specified when the `libm` feature is enabled.
|
|
#[inline(always)]
|
|
pub fn hypot(x: f32, y: f32) -> f32 {
|
|
f32::hypot(x, y)
|
|
}
|
|
|
|
/// Computes the sine of a number (in radians).
|
|
///
|
|
/// Precision is specified when the `libm` feature is enabled.
|
|
#[inline(always)]
|
|
pub fn sin(x: f32) -> f32 {
|
|
f32::sin(x)
|
|
}
|
|
|
|
/// Computes the cosine of a number (in radians).
|
|
///
|
|
/// Precision is specified when the `libm` feature is enabled.
|
|
#[inline(always)]
|
|
pub fn cos(x: f32) -> f32 {
|
|
f32::cos(x)
|
|
}
|
|
|
|
/// Computes the tangent of a number (in radians).
|
|
///
|
|
/// Precision is specified when the `libm` feature is enabled.
|
|
#[inline(always)]
|
|
pub fn tan(x: f32) -> f32 {
|
|
f32::tan(x)
|
|
}
|
|
|
|
/// Computes the arcsine of a number. Return value is in radians in
|
|
/// the range [-pi/2, pi/2] or NaN if the number is outside the range
|
|
/// [-1, 1].
|
|
///
|
|
/// Precision is specified when the `libm` feature is enabled.
|
|
#[inline(always)]
|
|
pub fn asin(x: f32) -> f32 {
|
|
f32::asin(x)
|
|
}
|
|
|
|
/// Computes the arccosine of a number. Return value is in radians in
|
|
/// the range [0, pi] or NaN if the number is outside the range
|
|
/// [-1, 1].
|
|
///
|
|
/// Precision is specified when the `libm` feature is enabled.
|
|
#[inline(always)]
|
|
pub fn acos(x: f32) -> f32 {
|
|
f32::acos(x)
|
|
}
|
|
|
|
/// Computes the arctangent of a number. Return value is in radians in the
|
|
/// range [-pi/2, pi/2];
|
|
///
|
|
/// Precision is specified when the `libm` feature is enabled.
|
|
#[inline(always)]
|
|
pub fn atan(x: f32) -> f32 {
|
|
f32::atan(x)
|
|
}
|
|
|
|
/// Computes the four quadrant arctangent of `self` (`y`) and `other` (`x`) in radians.
|
|
///
|
|
/// * `x = 0`, `y = 0`: `0`
|
|
/// * `x >= 0`: `arctan(y/x)` -> `[-pi/2, pi/2]`
|
|
/// * `y >= 0`: `arctan(y/x) + pi` -> `(pi/2, pi]`
|
|
/// * `y < 0`: `arctan(y/x) - pi` -> `(-pi, -pi/2)`
|
|
///
|
|
/// Precision is specified when the `libm` feature is enabled.
|
|
#[inline(always)]
|
|
pub fn atan2(x: f32, y: f32) -> f32 {
|
|
f32::atan2(x, y)
|
|
}
|
|
|
|
/// Simultaneously computes the sine and cosine of the number, `x`. Returns
|
|
/// `(sin(x), cos(x))`.
|
|
///
|
|
/// Precision is specified when the `libm` feature is enabled.
|
|
#[inline(always)]
|
|
pub fn sin_cos(x: f32) -> (f32, f32) {
|
|
f32::sin_cos(x)
|
|
}
|
|
|
|
/// Returns `e^(self) - 1` in a way that is accurate even if the
|
|
/// number is close to zero.
|
|
///
|
|
/// Precision is specified when the `libm` feature is enabled.
|
|
#[inline(always)]
|
|
pub fn exp_m1(x: f32) -> f32 {
|
|
f32::exp_m1(x)
|
|
}
|
|
|
|
/// Returns `ln(1+n)` (natural logarithm) more accurately than if
|
|
/// the operations were performed separately.
|
|
///
|
|
/// Precision is specified when the `libm` feature is enabled.
|
|
#[inline(always)]
|
|
pub fn ln_1p(x: f32) -> f32 {
|
|
f32::ln_1p(x)
|
|
}
|
|
|
|
/// Hyperbolic sine function.
|
|
///
|
|
/// Precision is specified when the `libm` feature is enabled.
|
|
#[inline(always)]
|
|
pub fn sinh(x: f32) -> f32 {
|
|
f32::sinh(x)
|
|
}
|
|
|
|
/// Hyperbolic cosine function.
|
|
///
|
|
/// Precision is specified when the `libm` feature is enabled.
|
|
#[inline(always)]
|
|
pub fn cosh(x: f32) -> f32 {
|
|
f32::cosh(x)
|
|
}
|
|
|
|
/// Hyperbolic tangent function.
|
|
///
|
|
/// Precision is specified when the `libm` feature is enabled.
|
|
#[inline(always)]
|
|
pub fn tanh(x: f32) -> f32 {
|
|
f32::tanh(x)
|
|
}
|
|
|
|
/// Inverse hyperbolic sine function.
|
|
///
|
|
/// Precision is specified when the `libm` feature is enabled.
|
|
#[inline(always)]
|
|
pub fn asinh(x: f32) -> f32 {
|
|
f32::asinh(x)
|
|
}
|
|
|
|
/// Inverse hyperbolic cosine function.
|
|
///
|
|
/// Precision is specified when the `libm` feature is enabled.
|
|
#[inline(always)]
|
|
pub fn acosh(x: f32) -> f32 {
|
|
f32::acosh(x)
|
|
}
|
|
|
|
/// Inverse hyperbolic tangent function.
|
|
///
|
|
/// Precision is specified when the `libm` feature is enabled.
|
|
#[inline(always)]
|
|
pub fn atanh(x: f32) -> f32 {
|
|
f32::atanh(x)
|
|
}
|
|
}
|
|
|
|
#[cfg(feature = "libm")]
|
|
mod libm_ops {
|
|
|
|
/// Raises a number to a floating point power.
|
|
///
|
|
/// Precision is specified when the `libm` feature is enabled.
|
|
#[inline(always)]
|
|
pub fn powf(x: f32, y: f32) -> f32 {
|
|
libm::powf(x, y)
|
|
}
|
|
|
|
/// Returns `e^(self)`, (the exponential function).
|
|
///
|
|
/// Precision is specified when the `libm` feature is enabled.
|
|
#[inline(always)]
|
|
pub fn exp(x: f32) -> f32 {
|
|
libm::expf(x)
|
|
}
|
|
|
|
/// Returns `2^(self)`.
|
|
///
|
|
/// Precision is specified when the `libm` feature is enabled.
|
|
#[inline(always)]
|
|
pub fn exp2(x: f32) -> f32 {
|
|
libm::exp2f(x)
|
|
}
|
|
|
|
/// Returns the natural logarithm of the number.
|
|
///
|
|
/// Precision is specified when the `libm` feature is enabled.
|
|
#[inline(always)]
|
|
pub fn ln(x: f32) -> f32 {
|
|
// This isn't documented in `libm` but this is actually the base e logarithm.
|
|
libm::logf(x)
|
|
}
|
|
|
|
/// Returns the base 2 logarithm of the number.
|
|
///
|
|
/// Precision is specified when the `libm` feature is enabled.
|
|
#[inline(always)]
|
|
pub fn log2(x: f32) -> f32 {
|
|
libm::log2f(x)
|
|
}
|
|
|
|
/// Returns the base 10 logarithm of the number.
|
|
///
|
|
/// Precision is specified when the `libm` feature is enabled.
|
|
#[inline(always)]
|
|
pub fn log10(x: f32) -> f32 {
|
|
libm::log10f(x)
|
|
}
|
|
|
|
/// Returns the cube root of a number.
|
|
///
|
|
/// Precision is specified when the `libm` feature is enabled.
|
|
#[inline(always)]
|
|
pub fn cbrt(x: f32) -> f32 {
|
|
libm::cbrtf(x)
|
|
}
|
|
|
|
/// Compute the distance between the origin and a point `(x, y)` on the Euclidean plane.
|
|
///
|
|
/// Equivalently, compute the length of the hypotenuse of a right-angle triangle with other sides having length `x.abs()` and `y.abs()`.
|
|
///
|
|
/// Precision is specified when the `libm` feature is enabled.
|
|
#[inline(always)]
|
|
pub fn hypot(x: f32, y: f32) -> f32 {
|
|
libm::hypotf(x, y)
|
|
}
|
|
|
|
/// Computes the sine of a number (in radians).
|
|
///
|
|
/// Precision is specified when the `libm` feature is enabled.
|
|
#[inline(always)]
|
|
pub fn sin(x: f32) -> f32 {
|
|
libm::sinf(x)
|
|
}
|
|
|
|
/// Computes the cosine of a number (in radians).
|
|
///
|
|
/// Precision is specified when the `libm` feature is enabled.
|
|
#[inline(always)]
|
|
pub fn cos(x: f32) -> f32 {
|
|
libm::cosf(x)
|
|
}
|
|
|
|
/// Computes the tangent of a number (in radians).
|
|
///
|
|
/// Precision is specified when the `libm` feature is enabled.
|
|
#[inline(always)]
|
|
pub fn tan(x: f32) -> f32 {
|
|
libm::tanf(x)
|
|
}
|
|
|
|
/// Computes the arcsine of a number. Return value is in radians in
|
|
/// the range [-pi/2, pi/2] or NaN if the number is outside the range
|
|
/// [-1, 1].
|
|
///
|
|
/// Precision is specified when the `libm` feature is enabled.
|
|
#[inline(always)]
|
|
pub fn asin(x: f32) -> f32 {
|
|
libm::asinf(x)
|
|
}
|
|
|
|
/// Computes the arccosine of a number. Return value is in radians in
|
|
/// Hyperbolic tangent function.
|
|
///
|
|
/// Precision is specified when the `libm` feature is enabled.
|
|
/// the range [0, pi] or NaN if the number is outside the range
|
|
/// [-1, 1].
|
|
///
|
|
/// Precision is specified when the `libm` feature is enabled.
|
|
#[inline(always)]
|
|
pub fn acos(x: f32) -> f32 {
|
|
libm::acosf(x)
|
|
}
|
|
|
|
/// Computes the arctangent of a number. Return value is in radians in the
|
|
/// range [-pi/2, pi/2];
|
|
///
|
|
/// Precision is specified when the `libm` feature is enabled.
|
|
#[inline(always)]
|
|
pub fn atan(x: f32) -> f32 {
|
|
libm::atanf(x)
|
|
}
|
|
|
|
/// Computes the four quadrant arctangent of `self` (`y`) and `other` (`x`) in radians.
|
|
///
|
|
/// * `x = 0`, `y = 0`: `0`
|
|
/// * `x >= 0`: `arctan(y/x)` -> `[-pi/2, pi/2]`
|
|
/// * `y >= 0`: `arctan(y/x) + pi` -> `(pi/2, pi]`
|
|
/// * `y < 0`: `arctan(y/x) - pi` -> `(-pi, -pi/2)`
|
|
///
|
|
/// Precision is specified when the `libm` feature is enabled.
|
|
#[inline(always)]
|
|
pub fn atan2(x: f32, y: f32) -> f32 {
|
|
libm::atan2f(x, y)
|
|
}
|
|
|
|
/// Simultaneously computes the sine and cosine of the number, `x`. Returns
|
|
/// `(sin(x), cos(x))`.
|
|
///
|
|
/// Precision is specified when the `libm` feature is enabled.
|
|
#[inline(always)]
|
|
pub fn sin_cos(x: f32) -> (f32, f32) {
|
|
libm::sincosf(x)
|
|
}
|
|
|
|
/// Returns `e^(self) - 1` in a way that is accurate even if the
|
|
/// number is close to zero.
|
|
///
|
|
/// Precision is specified when the `libm` feature is enabled.
|
|
#[inline(always)]
|
|
pub fn exp_m1(x: f32) -> f32 {
|
|
libm::expm1f(x)
|
|
}
|
|
|
|
/// Returns `ln(1+n)` (natural logarithm) more accurately than if
|
|
/// the operations were performed separately.
|
|
///
|
|
/// Precision is specified when the `libm` feature is enabled.
|
|
#[inline(always)]
|
|
pub fn ln_1p(x: f32) -> f32 {
|
|
libm::log1pf(x)
|
|
}
|
|
|
|
/// Hyperbolic sine function.
|
|
///
|
|
/// Precision is specified when the `libm` feature is enabled.
|
|
#[inline(always)]
|
|
pub fn sinh(x: f32) -> f32 {
|
|
libm::sinhf(x)
|
|
}
|
|
|
|
/// Hyperbolic cosine function.
|
|
///
|
|
/// Precision is specified when the `libm` feature is enabled.
|
|
#[inline(always)]
|
|
pub fn cosh(x: f32) -> f32 {
|
|
libm::coshf(x)
|
|
}
|
|
|
|
/// Hyperbolic tangent function.
|
|
///
|
|
/// Precision is specified when the `libm` feature is enabled.
|
|
#[inline(always)]
|
|
pub fn tanh(x: f32) -> f32 {
|
|
libm::tanhf(x)
|
|
}
|
|
|
|
/// Inverse hyperbolic sine function.
|
|
///
|
|
/// Precision is specified when the `libm` feature is enabled.
|
|
#[inline(always)]
|
|
pub fn asinh(x: f32) -> f32 {
|
|
libm::asinhf(x)
|
|
}
|
|
|
|
/// Inverse hyperbolic cosine function.
|
|
///
|
|
/// Precision is specified when the `libm` feature is enabled.
|
|
#[inline(always)]
|
|
pub fn acosh(x: f32) -> f32 {
|
|
libm::acoshf(x)
|
|
}
|
|
|
|
/// Inverse hyperbolic tangent function.
|
|
///
|
|
/// Precision is specified when the `libm` feature is enabled.
|
|
#[inline(always)]
|
|
pub fn atanh(x: f32) -> f32 {
|
|
libm::atanhf(x)
|
|
}
|
|
}
|
|
|
|
#[cfg(feature = "libm")]
|
|
pub use libm_ops::*;
|
|
|
|
#[cfg(not(feature = "libm"))]
|
|
pub use std_ops::*;
|
|
|
|
/// This extension trait covers shortfall in determinacy from the lack of a `libm` counterpart
|
|
/// to `f32::powi`. Use this for the common small exponents.
|
|
pub trait FloatPow {
|
|
/// Squares the f32
|
|
fn squared(self) -> Self;
|
|
/// Cubes the f32
|
|
fn cubed(self) -> Self;
|
|
}
|
|
|
|
impl FloatPow for f32 {
|
|
#[inline]
|
|
fn squared(self) -> Self {
|
|
self * self
|
|
}
|
|
#[inline]
|
|
fn cubed(self) -> Self {
|
|
self * self * self
|
|
}
|
|
}
|