bevy/crates/bevy_pbr/src/render/mesh.rs
Edgar Geier e54103fd69 Use prepass shaders for shadows (#7784)
# Objective

- Fixes #4372.

## Solution

- Use the prepass shaders for the shadow passes.
- Move `DEPTH_CLAMP_ORTHO` from `ShadowPipelineKey` to `MeshPipelineKey` and the associated clamp operation from `depth.wgsl` to `prepass.wgsl`.
- Remove `depth.wgsl` .
- Replace `ShadowPipeline` with `ShadowSamplers`.

Instead of running the custom `ShadowPipeline` we run the `PrepassPipeline` with the `DEPTH_PREPASS` flag and additionally the `DEPTH_CLAMP_ORTHO` flag for directional lights as well as the `ALPHA_MASK` flag for materials that use `AlphaMode::Mask(_)`.
2023-03-02 08:21:21 +00:00

1181 lines
45 KiB
Rust

use crate::{
environment_map, prepass, EnvironmentMapLight, FogMeta, GlobalLightMeta, GpuFog, GpuLights,
GpuPointLights, LightMeta, NotShadowCaster, NotShadowReceiver, ShadowSamplers,
ViewClusterBindings, ViewFogUniformOffset, ViewLightsUniformOffset, ViewShadowBindings,
CLUSTERED_FORWARD_STORAGE_BUFFER_COUNT, MAX_CASCADES_PER_LIGHT, MAX_DIRECTIONAL_LIGHTS,
};
use bevy_app::{IntoSystemAppConfigs, Plugin};
use bevy_asset::{load_internal_asset, Assets, Handle, HandleUntyped};
use bevy_core_pipeline::{
prepass::ViewPrepassTextures,
tonemapping::{
get_lut_bind_group_layout_entries, get_lut_bindings, Tonemapping, TonemappingLuts,
},
};
use bevy_ecs::{
prelude::*,
query::ROQueryItem,
system::{lifetimeless::*, SystemParamItem, SystemState},
};
use bevy_math::{Mat3A, Mat4, Vec2};
use bevy_reflect::TypeUuid;
use bevy_render::{
extract_component::{ComponentUniforms, DynamicUniformIndex, UniformComponentPlugin},
globals::{GlobalsBuffer, GlobalsUniform},
mesh::{
skinning::{SkinnedMesh, SkinnedMeshInverseBindposes},
GpuBufferInfo, Mesh, MeshVertexBufferLayout,
},
prelude::Msaa,
render_asset::RenderAssets,
render_phase::{PhaseItem, RenderCommand, RenderCommandResult, TrackedRenderPass},
render_resource::*,
renderer::{RenderDevice, RenderQueue},
texture::{
BevyDefault, DefaultImageSampler, FallbackImageCubemap, FallbackImagesDepth,
FallbackImagesMsaa, GpuImage, Image, ImageSampler, TextureFormatPixelInfo,
},
view::{ComputedVisibility, ViewTarget, ViewUniform, ViewUniformOffset, ViewUniforms},
Extract, ExtractSchedule, RenderApp, RenderSet,
};
use bevy_transform::components::GlobalTransform;
use std::num::NonZeroU64;
#[derive(Default)]
pub struct MeshRenderPlugin;
const MAX_JOINTS: usize = 256;
const JOINT_SIZE: usize = std::mem::size_of::<Mat4>();
pub(crate) const JOINT_BUFFER_SIZE: usize = MAX_JOINTS * JOINT_SIZE;
pub const MESH_VERTEX_OUTPUT: HandleUntyped =
HandleUntyped::weak_from_u64(Shader::TYPE_UUID, 2645551199423808407);
pub const MESH_VIEW_TYPES_HANDLE: HandleUntyped =
HandleUntyped::weak_from_u64(Shader::TYPE_UUID, 8140454348013264787);
pub const MESH_VIEW_BINDINGS_HANDLE: HandleUntyped =
HandleUntyped::weak_from_u64(Shader::TYPE_UUID, 9076678235888822571);
pub const MESH_TYPES_HANDLE: HandleUntyped =
HandleUntyped::weak_from_u64(Shader::TYPE_UUID, 2506024101911992377);
pub const MESH_BINDINGS_HANDLE: HandleUntyped =
HandleUntyped::weak_from_u64(Shader::TYPE_UUID, 16831548636314682308);
pub const MESH_FUNCTIONS_HANDLE: HandleUntyped =
HandleUntyped::weak_from_u64(Shader::TYPE_UUID, 6300874327833745635);
pub const MESH_SHADER_HANDLE: HandleUntyped =
HandleUntyped::weak_from_u64(Shader::TYPE_UUID, 3252377289100772450);
pub const SKINNING_HANDLE: HandleUntyped =
HandleUntyped::weak_from_u64(Shader::TYPE_UUID, 13215291596265391738);
impl Plugin for MeshRenderPlugin {
fn build(&self, app: &mut bevy_app::App) {
load_internal_asset!(
app,
MESH_VERTEX_OUTPUT,
"mesh_vertex_output.wgsl",
Shader::from_wgsl
);
load_internal_asset!(
app,
MESH_VIEW_TYPES_HANDLE,
"mesh_view_types.wgsl",
Shader::from_wgsl
);
load_internal_asset!(
app,
MESH_VIEW_BINDINGS_HANDLE,
"mesh_view_bindings.wgsl",
Shader::from_wgsl
);
load_internal_asset!(app, MESH_TYPES_HANDLE, "mesh_types.wgsl", Shader::from_wgsl);
load_internal_asset!(
app,
MESH_BINDINGS_HANDLE,
"mesh_bindings.wgsl",
Shader::from_wgsl
);
load_internal_asset!(
app,
MESH_FUNCTIONS_HANDLE,
"mesh_functions.wgsl",
Shader::from_wgsl
);
load_internal_asset!(app, MESH_SHADER_HANDLE, "mesh.wgsl", Shader::from_wgsl);
load_internal_asset!(app, SKINNING_HANDLE, "skinning.wgsl", Shader::from_wgsl);
app.add_plugin(UniformComponentPlugin::<MeshUniform>::default());
if let Ok(render_app) = app.get_sub_app_mut(RenderApp) {
render_app
.init_resource::<MeshPipeline>()
.init_resource::<SkinnedMeshUniform>()
.add_systems((extract_meshes, extract_skinned_meshes).in_schedule(ExtractSchedule))
.add_system(prepare_skinned_meshes.in_set(RenderSet::Prepare))
.add_system(queue_mesh_bind_group.in_set(RenderSet::Queue))
.add_system(queue_mesh_view_bind_groups.in_set(RenderSet::Queue));
}
}
}
#[derive(Component, ShaderType, Clone)]
pub struct MeshUniform {
pub transform: Mat4,
pub inverse_transpose_model: Mat4,
pub flags: u32,
}
// NOTE: These must match the bit flags in bevy_pbr/src/render/mesh_types.wgsl!
bitflags::bitflags! {
#[repr(transparent)]
struct MeshFlags: u32 {
const SHADOW_RECEIVER = (1 << 0);
// Indicates the sign of the determinant of the 3x3 model matrix. If the sign is positive,
// then the flag should be set, else it should not be set.
const SIGN_DETERMINANT_MODEL_3X3 = (1 << 31);
const NONE = 0;
const UNINITIALIZED = 0xFFFF;
}
}
pub fn extract_meshes(
mut commands: Commands,
mut prev_caster_commands_len: Local<usize>,
mut prev_not_caster_commands_len: Local<usize>,
meshes_query: Extract<
Query<(
Entity,
&ComputedVisibility,
&GlobalTransform,
&Handle<Mesh>,
Option<With<NotShadowReceiver>>,
Option<With<NotShadowCaster>>,
)>,
>,
) {
let mut caster_commands = Vec::with_capacity(*prev_caster_commands_len);
let mut not_caster_commands = Vec::with_capacity(*prev_not_caster_commands_len);
let visible_meshes = meshes_query.iter().filter(|(_, vis, ..)| vis.is_visible());
for (entity, _, transform, handle, not_receiver, not_caster) in visible_meshes {
let transform = transform.compute_matrix();
let mut flags = if not_receiver.is_some() {
MeshFlags::empty()
} else {
MeshFlags::SHADOW_RECEIVER
};
if Mat3A::from_mat4(transform).determinant().is_sign_positive() {
flags |= MeshFlags::SIGN_DETERMINANT_MODEL_3X3;
}
let uniform = MeshUniform {
flags: flags.bits,
transform,
inverse_transpose_model: transform.inverse().transpose(),
};
if not_caster.is_some() {
not_caster_commands.push((entity, (handle.clone_weak(), uniform, NotShadowCaster)));
} else {
caster_commands.push((entity, (handle.clone_weak(), uniform)));
}
}
*prev_caster_commands_len = caster_commands.len();
*prev_not_caster_commands_len = not_caster_commands.len();
commands.insert_or_spawn_batch(caster_commands);
commands.insert_or_spawn_batch(not_caster_commands);
}
#[derive(Component)]
pub struct SkinnedMeshJoints {
pub index: u32,
}
impl SkinnedMeshJoints {
#[inline]
pub fn build(
skin: &SkinnedMesh,
inverse_bindposes: &Assets<SkinnedMeshInverseBindposes>,
joints: &Query<&GlobalTransform>,
buffer: &mut BufferVec<Mat4>,
) -> Option<Self> {
let inverse_bindposes = inverse_bindposes.get(&skin.inverse_bindposes)?;
let start = buffer.len();
let target = start + skin.joints.len().min(MAX_JOINTS);
buffer.extend(
joints
.iter_many(&skin.joints)
.zip(inverse_bindposes.iter())
.map(|(joint, bindpose)| joint.affine() * *bindpose),
);
// iter_many will skip any failed fetches. This will cause it to assign the wrong bones,
// so just bail by truncating to the start.
if buffer.len() != target {
buffer.truncate(start);
return None;
}
// Pad to 256 byte alignment
while buffer.len() % 4 != 0 {
buffer.push(Mat4::ZERO);
}
Some(Self {
index: start as u32,
})
}
pub fn to_buffer_index(mut self) -> Self {
self.index *= std::mem::size_of::<Mat4>() as u32;
self
}
}
pub fn extract_skinned_meshes(
mut commands: Commands,
mut previous_len: Local<usize>,
mut uniform: ResMut<SkinnedMeshUniform>,
query: Extract<Query<(Entity, &ComputedVisibility, &SkinnedMesh)>>,
inverse_bindposes: Extract<Res<Assets<SkinnedMeshInverseBindposes>>>,
joint_query: Extract<Query<&GlobalTransform>>,
) {
uniform.buffer.clear();
let mut values = Vec::with_capacity(*previous_len);
let mut last_start = 0;
for (entity, computed_visibility, skin) in &query {
if !computed_visibility.is_visible() {
continue;
}
// PERF: This can be expensive, can we move this to prepare?
if let Some(skinned_joints) =
SkinnedMeshJoints::build(skin, &inverse_bindposes, &joint_query, &mut uniform.buffer)
{
last_start = last_start.max(skinned_joints.index as usize);
values.push((entity, skinned_joints.to_buffer_index()));
}
}
// Pad out the buffer to ensure that there's enough space for bindings
while uniform.buffer.len() - last_start < MAX_JOINTS {
uniform.buffer.push(Mat4::ZERO);
}
*previous_len = values.len();
commands.insert_or_spawn_batch(values);
}
#[derive(Resource, Clone)]
pub struct MeshPipeline {
pub view_layout: BindGroupLayout,
pub view_layout_multisampled: BindGroupLayout,
pub mesh_layout: BindGroupLayout,
pub skinned_mesh_layout: BindGroupLayout,
// This dummy white texture is to be used in place of optional StandardMaterial textures
pub dummy_white_gpu_image: GpuImage,
pub clustered_forward_buffer_binding_type: BufferBindingType,
}
impl FromWorld for MeshPipeline {
fn from_world(world: &mut World) -> Self {
let mut system_state: SystemState<(
Res<RenderDevice>,
Res<DefaultImageSampler>,
Res<RenderQueue>,
)> = SystemState::new(world);
let (render_device, default_sampler, render_queue) = system_state.get_mut(world);
let clustered_forward_buffer_binding_type = render_device
.get_supported_read_only_binding_type(CLUSTERED_FORWARD_STORAGE_BUFFER_COUNT);
/// Returns the appropriate bind group layout vec based on the parameters
fn layout_entries(
clustered_forward_buffer_binding_type: BufferBindingType,
multisampled: bool,
) -> Vec<BindGroupLayoutEntry> {
let mut entries = vec![
// View
BindGroupLayoutEntry {
binding: 0,
visibility: ShaderStages::VERTEX | ShaderStages::FRAGMENT,
ty: BindingType::Buffer {
ty: BufferBindingType::Uniform,
has_dynamic_offset: true,
min_binding_size: Some(ViewUniform::min_size()),
},
count: None,
},
// Lights
BindGroupLayoutEntry {
binding: 1,
visibility: ShaderStages::FRAGMENT,
ty: BindingType::Buffer {
ty: BufferBindingType::Uniform,
has_dynamic_offset: true,
min_binding_size: Some(GpuLights::min_size()),
},
count: None,
},
// Point Shadow Texture Cube Array
BindGroupLayoutEntry {
binding: 2,
visibility: ShaderStages::FRAGMENT,
ty: BindingType::Texture {
multisampled: false,
sample_type: TextureSampleType::Depth,
#[cfg(not(feature = "webgl"))]
view_dimension: TextureViewDimension::CubeArray,
#[cfg(feature = "webgl")]
view_dimension: TextureViewDimension::Cube,
},
count: None,
},
// Point Shadow Texture Array Sampler
BindGroupLayoutEntry {
binding: 3,
visibility: ShaderStages::FRAGMENT,
ty: BindingType::Sampler(SamplerBindingType::Comparison),
count: None,
},
// Directional Shadow Texture Array
BindGroupLayoutEntry {
binding: 4,
visibility: ShaderStages::FRAGMENT,
ty: BindingType::Texture {
multisampled: false,
sample_type: TextureSampleType::Depth,
#[cfg(not(feature = "webgl"))]
view_dimension: TextureViewDimension::D2Array,
#[cfg(feature = "webgl")]
view_dimension: TextureViewDimension::D2,
},
count: None,
},
// Directional Shadow Texture Array Sampler
BindGroupLayoutEntry {
binding: 5,
visibility: ShaderStages::FRAGMENT,
ty: BindingType::Sampler(SamplerBindingType::Comparison),
count: None,
},
// PointLights
BindGroupLayoutEntry {
binding: 6,
visibility: ShaderStages::FRAGMENT,
ty: BindingType::Buffer {
ty: clustered_forward_buffer_binding_type,
has_dynamic_offset: false,
min_binding_size: Some(GpuPointLights::min_size(
clustered_forward_buffer_binding_type,
)),
},
count: None,
},
// ClusteredLightIndexLists
BindGroupLayoutEntry {
binding: 7,
visibility: ShaderStages::FRAGMENT,
ty: BindingType::Buffer {
ty: clustered_forward_buffer_binding_type,
has_dynamic_offset: false,
min_binding_size: Some(
ViewClusterBindings::min_size_cluster_light_index_lists(
clustered_forward_buffer_binding_type,
),
),
},
count: None,
},
// ClusterOffsetsAndCounts
BindGroupLayoutEntry {
binding: 8,
visibility: ShaderStages::FRAGMENT,
ty: BindingType::Buffer {
ty: clustered_forward_buffer_binding_type,
has_dynamic_offset: false,
min_binding_size: Some(
ViewClusterBindings::min_size_cluster_offsets_and_counts(
clustered_forward_buffer_binding_type,
),
),
},
count: None,
},
// Globals
BindGroupLayoutEntry {
binding: 9,
visibility: ShaderStages::VERTEX_FRAGMENT,
ty: BindingType::Buffer {
ty: BufferBindingType::Uniform,
has_dynamic_offset: false,
min_binding_size: Some(GlobalsUniform::min_size()),
},
count: None,
},
// Fog
BindGroupLayoutEntry {
binding: 10,
visibility: ShaderStages::FRAGMENT,
ty: BindingType::Buffer {
ty: BufferBindingType::Uniform,
has_dynamic_offset: true,
min_binding_size: Some(GpuFog::min_size()),
},
count: None,
},
];
// EnvironmentMapLight
let environment_map_entries =
environment_map::get_bind_group_layout_entries([11, 12, 13]);
entries.extend_from_slice(&environment_map_entries);
// Tonemapping
let tonemapping_lut_entries = get_lut_bind_group_layout_entries([14, 15]);
entries.extend_from_slice(&tonemapping_lut_entries);
if cfg!(not(feature = "webgl")) || (cfg!(feature = "webgl") && !multisampled) {
entries.extend_from_slice(&prepass::get_bind_group_layout_entries(
[16, 17],
multisampled,
));
}
entries
}
let view_layout = render_device.create_bind_group_layout(&BindGroupLayoutDescriptor {
label: Some("mesh_view_layout"),
entries: &layout_entries(clustered_forward_buffer_binding_type, false),
});
let view_layout_multisampled =
render_device.create_bind_group_layout(&BindGroupLayoutDescriptor {
label: Some("mesh_view_layout_multisampled"),
entries: &layout_entries(clustered_forward_buffer_binding_type, true),
});
let mesh_binding = BindGroupLayoutEntry {
binding: 0,
visibility: ShaderStages::VERTEX | ShaderStages::FRAGMENT,
ty: BindingType::Buffer {
ty: BufferBindingType::Uniform,
has_dynamic_offset: true,
min_binding_size: Some(MeshUniform::min_size()),
},
count: None,
};
let mesh_layout = render_device.create_bind_group_layout(&BindGroupLayoutDescriptor {
entries: &[mesh_binding],
label: Some("mesh_layout"),
});
let skinned_mesh_layout =
render_device.create_bind_group_layout(&BindGroupLayoutDescriptor {
entries: &[
mesh_binding,
BindGroupLayoutEntry {
binding: 1,
visibility: ShaderStages::VERTEX,
ty: BindingType::Buffer {
ty: BufferBindingType::Uniform,
has_dynamic_offset: true,
min_binding_size: BufferSize::new(JOINT_BUFFER_SIZE as u64),
},
count: None,
},
],
label: Some("skinned_mesh_layout"),
});
// A 1x1x1 'all 1.0' texture to use as a dummy texture to use in place of optional StandardMaterial textures
let dummy_white_gpu_image = {
let image = Image::new_fill(
Extent3d::default(),
TextureDimension::D2,
&[255u8; 4],
TextureFormat::bevy_default(),
);
let texture = render_device.create_texture(&image.texture_descriptor);
let sampler = match image.sampler_descriptor {
ImageSampler::Default => (**default_sampler).clone(),
ImageSampler::Descriptor(descriptor) => render_device.create_sampler(&descriptor),
};
let format_size = image.texture_descriptor.format.pixel_size();
render_queue.write_texture(
ImageCopyTexture {
texture: &texture,
mip_level: 0,
origin: Origin3d::ZERO,
aspect: TextureAspect::All,
},
&image.data,
ImageDataLayout {
offset: 0,
bytes_per_row: Some(
std::num::NonZeroU32::new(
image.texture_descriptor.size.width * format_size as u32,
)
.unwrap(),
),
rows_per_image: None,
},
image.texture_descriptor.size,
);
let texture_view = texture.create_view(&TextureViewDescriptor::default());
GpuImage {
texture,
texture_view,
texture_format: image.texture_descriptor.format,
sampler,
size: Vec2::new(
image.texture_descriptor.size.width as f32,
image.texture_descriptor.size.height as f32,
),
mip_level_count: image.texture_descriptor.mip_level_count,
}
};
MeshPipeline {
view_layout,
view_layout_multisampled,
mesh_layout,
skinned_mesh_layout,
clustered_forward_buffer_binding_type,
dummy_white_gpu_image,
}
}
}
impl MeshPipeline {
pub fn get_image_texture<'a>(
&'a self,
gpu_images: &'a RenderAssets<Image>,
handle_option: &Option<Handle<Image>>,
) -> Option<(&'a TextureView, &'a Sampler)> {
if let Some(handle) = handle_option {
let gpu_image = gpu_images.get(handle)?;
Some((&gpu_image.texture_view, &gpu_image.sampler))
} else {
Some((
&self.dummy_white_gpu_image.texture_view,
&self.dummy_white_gpu_image.sampler,
))
}
}
}
bitflags::bitflags! {
#[repr(transparent)]
// NOTE: Apparently quadro drivers support up to 64x MSAA.
/// MSAA uses the highest 3 bits for the MSAA log2(sample count) to support up to 128x MSAA.
pub struct MeshPipelineKey: u32 {
const NONE = 0;
const HDR = (1 << 0);
const TONEMAP_IN_SHADER = (1 << 1);
const DEBAND_DITHER = (1 << 2);
const DEPTH_PREPASS = (1 << 3);
const NORMAL_PREPASS = (1 << 4);
const ALPHA_MASK = (1 << 5);
const ENVIRONMENT_MAP = (1 << 6);
const DEPTH_CLAMP_ORTHO = (1 << 7);
const BLEND_RESERVED_BITS = Self::BLEND_MASK_BITS << Self::BLEND_SHIFT_BITS; // ← Bitmask reserving bits for the blend state
const BLEND_OPAQUE = (0 << Self::BLEND_SHIFT_BITS); // ← Values are just sequential within the mask, and can range from 0 to 3
const BLEND_PREMULTIPLIED_ALPHA = (1 << Self::BLEND_SHIFT_BITS); //
const BLEND_MULTIPLY = (2 << Self::BLEND_SHIFT_BITS); // ← We still have room for one more value without adding more bits
const MSAA_RESERVED_BITS = Self::MSAA_MASK_BITS << Self::MSAA_SHIFT_BITS;
const PRIMITIVE_TOPOLOGY_RESERVED_BITS = Self::PRIMITIVE_TOPOLOGY_MASK_BITS << Self::PRIMITIVE_TOPOLOGY_SHIFT_BITS;
const TONEMAP_METHOD_RESERVED_BITS = Self::TONEMAP_METHOD_MASK_BITS << Self::TONEMAP_METHOD_SHIFT_BITS;
const TONEMAP_METHOD_NONE = 0 << Self::TONEMAP_METHOD_SHIFT_BITS;
const TONEMAP_METHOD_REINHARD = 1 << Self::TONEMAP_METHOD_SHIFT_BITS;
const TONEMAP_METHOD_REINHARD_LUMINANCE = 2 << Self::TONEMAP_METHOD_SHIFT_BITS;
const TONEMAP_METHOD_ACES_FITTED = 3 << Self::TONEMAP_METHOD_SHIFT_BITS;
const TONEMAP_METHOD_AGX = 4 << Self::TONEMAP_METHOD_SHIFT_BITS;
const TONEMAP_METHOD_SOMEWHAT_BORING_DISPLAY_TRANSFORM = 5 << Self::TONEMAP_METHOD_SHIFT_BITS;
const TONEMAP_METHOD_TONY_MC_MAPFACE = 6 << Self::TONEMAP_METHOD_SHIFT_BITS;
const TONEMAP_METHOD_BLENDER_FILMIC = 7 << Self::TONEMAP_METHOD_SHIFT_BITS;
}
}
impl MeshPipelineKey {
const MSAA_MASK_BITS: u32 = 0b111;
const MSAA_SHIFT_BITS: u32 = 32 - Self::MSAA_MASK_BITS.count_ones();
const PRIMITIVE_TOPOLOGY_MASK_BITS: u32 = 0b111;
const PRIMITIVE_TOPOLOGY_SHIFT_BITS: u32 =
Self::MSAA_SHIFT_BITS - Self::PRIMITIVE_TOPOLOGY_MASK_BITS.count_ones();
const BLEND_MASK_BITS: u32 = 0b11;
const BLEND_SHIFT_BITS: u32 =
Self::PRIMITIVE_TOPOLOGY_SHIFT_BITS - Self::BLEND_MASK_BITS.count_ones();
const TONEMAP_METHOD_MASK_BITS: u32 = 0b111;
const TONEMAP_METHOD_SHIFT_BITS: u32 =
Self::BLEND_SHIFT_BITS - Self::TONEMAP_METHOD_MASK_BITS.count_ones();
pub fn from_msaa_samples(msaa_samples: u32) -> Self {
let msaa_bits =
(msaa_samples.trailing_zeros() & Self::MSAA_MASK_BITS) << Self::MSAA_SHIFT_BITS;
Self::from_bits(msaa_bits).unwrap()
}
pub fn from_hdr(hdr: bool) -> Self {
if hdr {
MeshPipelineKey::HDR
} else {
MeshPipelineKey::NONE
}
}
pub fn msaa_samples(&self) -> u32 {
1 << ((self.bits >> Self::MSAA_SHIFT_BITS) & Self::MSAA_MASK_BITS)
}
pub fn from_primitive_topology(primitive_topology: PrimitiveTopology) -> Self {
let primitive_topology_bits = ((primitive_topology as u32)
& Self::PRIMITIVE_TOPOLOGY_MASK_BITS)
<< Self::PRIMITIVE_TOPOLOGY_SHIFT_BITS;
Self::from_bits(primitive_topology_bits).unwrap()
}
pub fn primitive_topology(&self) -> PrimitiveTopology {
let primitive_topology_bits =
(self.bits >> Self::PRIMITIVE_TOPOLOGY_SHIFT_BITS) & Self::PRIMITIVE_TOPOLOGY_MASK_BITS;
match primitive_topology_bits {
x if x == PrimitiveTopology::PointList as u32 => PrimitiveTopology::PointList,
x if x == PrimitiveTopology::LineList as u32 => PrimitiveTopology::LineList,
x if x == PrimitiveTopology::LineStrip as u32 => PrimitiveTopology::LineStrip,
x if x == PrimitiveTopology::TriangleList as u32 => PrimitiveTopology::TriangleList,
x if x == PrimitiveTopology::TriangleStrip as u32 => PrimitiveTopology::TriangleStrip,
_ => PrimitiveTopology::default(),
}
}
}
impl SpecializedMeshPipeline for MeshPipeline {
type Key = MeshPipelineKey;
fn specialize(
&self,
key: Self::Key,
layout: &MeshVertexBufferLayout,
) -> Result<RenderPipelineDescriptor, SpecializedMeshPipelineError> {
let mut shader_defs = Vec::new();
let mut vertex_attributes = Vec::new();
if layout.contains(Mesh::ATTRIBUTE_POSITION) {
shader_defs.push("VERTEX_POSITIONS".into());
vertex_attributes.push(Mesh::ATTRIBUTE_POSITION.at_shader_location(0));
}
if layout.contains(Mesh::ATTRIBUTE_NORMAL) {
shader_defs.push("VERTEX_NORMALS".into());
vertex_attributes.push(Mesh::ATTRIBUTE_NORMAL.at_shader_location(1));
}
shader_defs.push(ShaderDefVal::UInt(
"MAX_DIRECTIONAL_LIGHTS".to_string(),
MAX_DIRECTIONAL_LIGHTS as u32,
));
shader_defs.push(ShaderDefVal::UInt(
"MAX_CASCADES_PER_LIGHT".to_string(),
MAX_CASCADES_PER_LIGHT as u32,
));
if layout.contains(Mesh::ATTRIBUTE_UV_0) {
shader_defs.push("VERTEX_UVS".into());
vertex_attributes.push(Mesh::ATTRIBUTE_UV_0.at_shader_location(2));
}
if layout.contains(Mesh::ATTRIBUTE_TANGENT) {
shader_defs.push("VERTEX_TANGENTS".into());
vertex_attributes.push(Mesh::ATTRIBUTE_TANGENT.at_shader_location(3));
}
if layout.contains(Mesh::ATTRIBUTE_COLOR) {
shader_defs.push("VERTEX_COLORS".into());
vertex_attributes.push(Mesh::ATTRIBUTE_COLOR.at_shader_location(4));
}
let mut bind_group_layout = match key.msaa_samples() {
1 => vec![self.view_layout.clone()],
_ => {
shader_defs.push("MULTISAMPLED".into());
vec![self.view_layout_multisampled.clone()]
}
};
if layout.contains(Mesh::ATTRIBUTE_JOINT_INDEX)
&& layout.contains(Mesh::ATTRIBUTE_JOINT_WEIGHT)
{
shader_defs.push("SKINNED".into());
vertex_attributes.push(Mesh::ATTRIBUTE_JOINT_INDEX.at_shader_location(5));
vertex_attributes.push(Mesh::ATTRIBUTE_JOINT_WEIGHT.at_shader_location(6));
bind_group_layout.push(self.skinned_mesh_layout.clone());
} else {
bind_group_layout.push(self.mesh_layout.clone());
};
let vertex_buffer_layout = layout.get_layout(&vertex_attributes)?;
let (label, blend, depth_write_enabled);
let pass = key.intersection(MeshPipelineKey::BLEND_RESERVED_BITS);
if pass == MeshPipelineKey::BLEND_PREMULTIPLIED_ALPHA {
label = "premultiplied_alpha_mesh_pipeline".into();
blend = Some(BlendState::PREMULTIPLIED_ALPHA_BLENDING);
shader_defs.push("PREMULTIPLY_ALPHA".into());
shader_defs.push("BLEND_PREMULTIPLIED_ALPHA".into());
// For the transparent pass, fragments that are closer will be alpha blended
// but their depth is not written to the depth buffer
depth_write_enabled = false;
} else if pass == MeshPipelineKey::BLEND_MULTIPLY {
label = "multiply_mesh_pipeline".into();
blend = Some(BlendState {
color: BlendComponent {
src_factor: BlendFactor::Dst,
dst_factor: BlendFactor::OneMinusSrcAlpha,
operation: BlendOperation::Add,
},
alpha: BlendComponent::OVER,
});
shader_defs.push("PREMULTIPLY_ALPHA".into());
shader_defs.push("BLEND_MULTIPLY".into());
// For the multiply pass, fragments that are closer will be alpha blended
// but their depth is not written to the depth buffer
depth_write_enabled = false;
} else {
label = "opaque_mesh_pipeline".into();
blend = Some(BlendState::REPLACE);
// For the opaque and alpha mask passes, fragments that are closer will replace
// the current fragment value in the output and the depth is written to the
// depth buffer
depth_write_enabled = true;
}
if key.contains(MeshPipelineKey::TONEMAP_IN_SHADER) {
shader_defs.push("TONEMAP_IN_SHADER".into());
let method = key.intersection(MeshPipelineKey::TONEMAP_METHOD_RESERVED_BITS);
if method == MeshPipelineKey::TONEMAP_METHOD_NONE {
shader_defs.push("TONEMAP_METHOD_NONE".into());
} else if method == MeshPipelineKey::TONEMAP_METHOD_REINHARD {
shader_defs.push("TONEMAP_METHOD_REINHARD".into());
} else if method == MeshPipelineKey::TONEMAP_METHOD_REINHARD_LUMINANCE {
shader_defs.push("TONEMAP_METHOD_REINHARD_LUMINANCE".into());
} else if method == MeshPipelineKey::TONEMAP_METHOD_ACES_FITTED {
shader_defs.push("TONEMAP_METHOD_ACES_FITTED ".into());
} else if method == MeshPipelineKey::TONEMAP_METHOD_AGX {
shader_defs.push("TONEMAP_METHOD_AGX".into());
} else if method == MeshPipelineKey::TONEMAP_METHOD_SOMEWHAT_BORING_DISPLAY_TRANSFORM {
shader_defs.push("TONEMAP_METHOD_SOMEWHAT_BORING_DISPLAY_TRANSFORM".into());
} else if method == MeshPipelineKey::TONEMAP_METHOD_BLENDER_FILMIC {
shader_defs.push("TONEMAP_METHOD_BLENDER_FILMIC".into());
} else if method == MeshPipelineKey::TONEMAP_METHOD_TONY_MC_MAPFACE {
shader_defs.push("TONEMAP_METHOD_TONY_MC_MAPFACE".into());
}
// Debanding is tied to tonemapping in the shader, cannot run without it.
if key.contains(MeshPipelineKey::DEBAND_DITHER) {
shader_defs.push("DEBAND_DITHER".into());
}
}
if key.contains(MeshPipelineKey::ENVIRONMENT_MAP) {
shader_defs.push("ENVIRONMENT_MAP".into());
}
let format = if key.contains(MeshPipelineKey::HDR) {
ViewTarget::TEXTURE_FORMAT_HDR
} else {
TextureFormat::bevy_default()
};
Ok(RenderPipelineDescriptor {
vertex: VertexState {
shader: MESH_SHADER_HANDLE.typed::<Shader>(),
entry_point: "vertex".into(),
shader_defs: shader_defs.clone(),
buffers: vec![vertex_buffer_layout],
},
fragment: Some(FragmentState {
shader: MESH_SHADER_HANDLE.typed::<Shader>(),
shader_defs,
entry_point: "fragment".into(),
targets: vec![Some(ColorTargetState {
format,
blend,
write_mask: ColorWrites::ALL,
})],
}),
layout: bind_group_layout,
push_constant_ranges: Vec::new(),
primitive: PrimitiveState {
front_face: FrontFace::Ccw,
cull_mode: Some(Face::Back),
unclipped_depth: false,
polygon_mode: PolygonMode::Fill,
conservative: false,
topology: key.primitive_topology(),
strip_index_format: None,
},
depth_stencil: Some(DepthStencilState {
format: TextureFormat::Depth32Float,
depth_write_enabled,
depth_compare: CompareFunction::GreaterEqual,
stencil: StencilState {
front: StencilFaceState::IGNORE,
back: StencilFaceState::IGNORE,
read_mask: 0,
write_mask: 0,
},
bias: DepthBiasState {
constant: 0,
slope_scale: 0.0,
clamp: 0.0,
},
}),
multisample: MultisampleState {
count: key.msaa_samples(),
mask: !0,
alpha_to_coverage_enabled: false,
},
label: Some(label),
})
}
}
#[derive(Resource)]
pub struct MeshBindGroup {
pub normal: BindGroup,
pub skinned: Option<BindGroup>,
}
pub fn queue_mesh_bind_group(
mut commands: Commands,
mesh_pipeline: Res<MeshPipeline>,
render_device: Res<RenderDevice>,
mesh_uniforms: Res<ComponentUniforms<MeshUniform>>,
skinned_mesh_uniform: Res<SkinnedMeshUniform>,
) {
if let Some(mesh_binding) = mesh_uniforms.uniforms().binding() {
let mut mesh_bind_group = MeshBindGroup {
normal: render_device.create_bind_group(&BindGroupDescriptor {
entries: &[BindGroupEntry {
binding: 0,
resource: mesh_binding.clone(),
}],
label: Some("mesh_bind_group"),
layout: &mesh_pipeline.mesh_layout,
}),
skinned: None,
};
if let Some(skinned_joints_buffer) = skinned_mesh_uniform.buffer.buffer() {
mesh_bind_group.skinned = Some(render_device.create_bind_group(&BindGroupDescriptor {
entries: &[
BindGroupEntry {
binding: 0,
resource: mesh_binding,
},
BindGroupEntry {
binding: 1,
resource: BindingResource::Buffer(BufferBinding {
buffer: skinned_joints_buffer,
offset: 0,
size: Some(NonZeroU64::new(JOINT_BUFFER_SIZE as u64).unwrap()),
}),
},
],
label: Some("skinned_mesh_bind_group"),
layout: &mesh_pipeline.skinned_mesh_layout,
}));
}
commands.insert_resource(mesh_bind_group);
}
}
// NOTE: This is using BufferVec because it is using a trick to allow a fixed-size array
// in a uniform buffer to be used like a variable-sized array by only writing the valid data
// into the buffer, knowing the number of valid items starting from the dynamic offset, and
// ignoring the rest, whether they're valid for other dynamic offsets or not. This trick may
// be supported later in encase, and then we should make use of it.
#[derive(Resource)]
pub struct SkinnedMeshUniform {
pub buffer: BufferVec<Mat4>,
}
impl Default for SkinnedMeshUniform {
fn default() -> Self {
Self {
buffer: BufferVec::new(BufferUsages::UNIFORM),
}
}
}
pub fn prepare_skinned_meshes(
render_device: Res<RenderDevice>,
render_queue: Res<RenderQueue>,
mut skinned_mesh_uniform: ResMut<SkinnedMeshUniform>,
) {
if skinned_mesh_uniform.buffer.is_empty() {
return;
}
let len = skinned_mesh_uniform.buffer.len();
skinned_mesh_uniform.buffer.reserve(len, &render_device);
skinned_mesh_uniform
.buffer
.write_buffer(&render_device, &render_queue);
}
#[derive(Component)]
pub struct MeshViewBindGroup {
pub value: BindGroup,
}
#[allow(clippy::too_many_arguments)]
pub fn queue_mesh_view_bind_groups(
mut commands: Commands,
render_device: Res<RenderDevice>,
mesh_pipeline: Res<MeshPipeline>,
shadow_samplers: Res<ShadowSamplers>,
light_meta: Res<LightMeta>,
global_light_meta: Res<GlobalLightMeta>,
fog_meta: Res<FogMeta>,
view_uniforms: Res<ViewUniforms>,
views: Query<(
Entity,
&ViewShadowBindings,
&ViewClusterBindings,
Option<&ViewPrepassTextures>,
Option<&EnvironmentMapLight>,
&Tonemapping,
)>,
images: Res<RenderAssets<Image>>,
mut fallback_images: FallbackImagesMsaa,
mut fallback_depths: FallbackImagesDepth,
fallback_cubemap: Res<FallbackImageCubemap>,
msaa: Res<Msaa>,
globals_buffer: Res<GlobalsBuffer>,
tonemapping_luts: Res<TonemappingLuts>,
) {
if let (
Some(view_binding),
Some(light_binding),
Some(point_light_binding),
Some(globals),
Some(fog_binding),
) = (
view_uniforms.uniforms.binding(),
light_meta.view_gpu_lights.binding(),
global_light_meta.gpu_point_lights.binding(),
globals_buffer.buffer.binding(),
fog_meta.gpu_fogs.binding(),
) {
for (
entity,
view_shadow_bindings,
view_cluster_bindings,
prepass_textures,
environment_map,
tonemapping,
) in &views
{
let layout = if msaa.samples() > 1 {
&mesh_pipeline.view_layout_multisampled
} else {
&mesh_pipeline.view_layout
};
let mut entries = vec![
BindGroupEntry {
binding: 0,
resource: view_binding.clone(),
},
BindGroupEntry {
binding: 1,
resource: light_binding.clone(),
},
BindGroupEntry {
binding: 2,
resource: BindingResource::TextureView(
&view_shadow_bindings.point_light_depth_texture_view,
),
},
BindGroupEntry {
binding: 3,
resource: BindingResource::Sampler(&shadow_samplers.point_light_sampler),
},
BindGroupEntry {
binding: 4,
resource: BindingResource::TextureView(
&view_shadow_bindings.directional_light_depth_texture_view,
),
},
BindGroupEntry {
binding: 5,
resource: BindingResource::Sampler(&shadow_samplers.directional_light_sampler),
},
BindGroupEntry {
binding: 6,
resource: point_light_binding.clone(),
},
BindGroupEntry {
binding: 7,
resource: view_cluster_bindings.light_index_lists_binding().unwrap(),
},
BindGroupEntry {
binding: 8,
resource: view_cluster_bindings.offsets_and_counts_binding().unwrap(),
},
BindGroupEntry {
binding: 9,
resource: globals.clone(),
},
BindGroupEntry {
binding: 10,
resource: fog_binding.clone(),
},
];
let env_map = environment_map::get_bindings(
environment_map,
&images,
&fallback_cubemap,
[11, 12, 13],
);
entries.extend_from_slice(&env_map);
let tonemapping_luts =
get_lut_bindings(&images, &tonemapping_luts, tonemapping, [14, 15]);
entries.extend_from_slice(&tonemapping_luts);
// When using WebGL, we can't have a depth texture with multisampling
if cfg!(not(feature = "webgl")) || (cfg!(feature = "webgl") && msaa.samples() == 1) {
entries.extend_from_slice(&prepass::get_bindings(
prepass_textures,
&mut fallback_images,
&mut fallback_depths,
&msaa,
[16, 17],
));
}
let view_bind_group = render_device.create_bind_group(&BindGroupDescriptor {
entries: &entries,
label: Some("mesh_view_bind_group"),
layout,
});
commands.entity(entity).insert(MeshViewBindGroup {
value: view_bind_group,
});
}
}
}
pub struct SetMeshViewBindGroup<const I: usize>;
impl<P: PhaseItem, const I: usize> RenderCommand<P> for SetMeshViewBindGroup<I> {
type Param = ();
type ViewWorldQuery = (
Read<ViewUniformOffset>,
Read<ViewLightsUniformOffset>,
Read<ViewFogUniformOffset>,
Read<MeshViewBindGroup>,
);
type ItemWorldQuery = ();
#[inline]
fn render<'w>(
_item: &P,
(view_uniform, view_lights, view_fog, mesh_view_bind_group): ROQueryItem<
'w,
Self::ViewWorldQuery,
>,
_entity: (),
_: SystemParamItem<'w, '_, Self::Param>,
pass: &mut TrackedRenderPass<'w>,
) -> RenderCommandResult {
pass.set_bind_group(
I,
&mesh_view_bind_group.value,
&[view_uniform.offset, view_lights.offset, view_fog.offset],
);
RenderCommandResult::Success
}
}
pub struct SetMeshBindGroup<const I: usize>;
impl<P: PhaseItem, const I: usize> RenderCommand<P> for SetMeshBindGroup<I> {
type Param = SRes<MeshBindGroup>;
type ViewWorldQuery = ();
type ItemWorldQuery = (
Read<DynamicUniformIndex<MeshUniform>>,
Option<Read<SkinnedMeshJoints>>,
);
#[inline]
fn render<'w>(
_item: &P,
_view: (),
(mesh_index, skinned_mesh_joints): ROQueryItem<'_, Self::ItemWorldQuery>,
mesh_bind_group: SystemParamItem<'w, '_, Self::Param>,
pass: &mut TrackedRenderPass<'w>,
) -> RenderCommandResult {
if let Some(joints) = skinned_mesh_joints {
pass.set_bind_group(
I,
mesh_bind_group.into_inner().skinned.as_ref().unwrap(),
&[mesh_index.index(), joints.index],
);
} else {
pass.set_bind_group(
I,
&mesh_bind_group.into_inner().normal,
&[mesh_index.index()],
);
}
RenderCommandResult::Success
}
}
pub struct DrawMesh;
impl<P: PhaseItem> RenderCommand<P> for DrawMesh {
type Param = SRes<RenderAssets<Mesh>>;
type ViewWorldQuery = ();
type ItemWorldQuery = Read<Handle<Mesh>>;
#[inline]
fn render<'w>(
_item: &P,
_view: (),
mesh_handle: ROQueryItem<'_, Self::ItemWorldQuery>,
meshes: SystemParamItem<'w, '_, Self::Param>,
pass: &mut TrackedRenderPass<'w>,
) -> RenderCommandResult {
if let Some(gpu_mesh) = meshes.into_inner().get(mesh_handle) {
pass.set_vertex_buffer(0, gpu_mesh.vertex_buffer.slice(..));
match &gpu_mesh.buffer_info {
GpuBufferInfo::Indexed {
buffer,
index_format,
count,
} => {
pass.set_index_buffer(buffer.slice(..), 0, *index_format);
pass.draw_indexed(0..*count, 0, 0..1);
}
GpuBufferInfo::NonIndexed { vertex_count } => {
pass.draw(0..*vertex_count, 0..1);
}
}
RenderCommandResult::Success
} else {
RenderCommandResult::Failure
}
}
}
#[cfg(test)]
mod tests {
use super::MeshPipelineKey;
#[test]
fn mesh_key_msaa_samples() {
for i in [1, 2, 4, 8, 16, 32, 64, 128] {
assert_eq!(MeshPipelineKey::from_msaa_samples(i).msaa_samples(), i);
}
}
}