2
0
Fork 0
mirror of https://github.com/bevyengine/bevy synced 2025-01-05 17:58:54 +00:00
bevy/crates/bevy_ecs/src/schedule/schedule.rs
Tygyh 696af48416
Remove unnecessary parentheses ()
# Objective

- Increase readability.

## Solution

- Remove unnecessary parentheses.
2023-12-16 02:26:18 +00:00

2380 lines
87 KiB
Rust

use std::{
collections::BTreeSet,
fmt::{Debug, Write},
result::Result,
};
#[cfg(feature = "trace")]
use bevy_utils::tracing::info_span;
use bevy_utils::{default, tracing::info};
use bevy_utils::{
petgraph::{algo::TarjanScc, prelude::*},
thiserror::Error,
tracing::{error, warn},
HashMap, HashSet,
};
use fixedbitset::FixedBitSet;
use crate::{
self as bevy_ecs,
component::{ComponentId, Components, Tick},
prelude::Component,
schedule::*,
system::{BoxedSystem, IntoSystem, Resource, System},
world::World,
};
/// Resource that stores [`Schedule`]s mapped to [`ScheduleLabel`]s.
#[derive(Default, Resource)]
pub struct Schedules {
inner: HashMap<InternedScheduleLabel, Schedule>,
/// List of [`ComponentId`]s to ignore when reporting system order ambiguity conflicts
pub ignored_scheduling_ambiguities: BTreeSet<ComponentId>,
}
impl Schedules {
/// Constructs an empty `Schedules` with zero initial capacity.
pub fn new() -> Self {
Self {
inner: HashMap::new(),
ignored_scheduling_ambiguities: BTreeSet::new(),
}
}
/// Inserts a labeled schedule into the map.
///
/// If the map already had an entry for `label`, `schedule` is inserted,
/// and the old schedule is returned. Otherwise, `None` is returned.
pub fn insert(&mut self, schedule: Schedule) -> Option<Schedule> {
self.inner.insert(schedule.name, schedule)
}
/// Removes the schedule corresponding to the `label` from the map, returning it if it existed.
pub fn remove(&mut self, label: impl ScheduleLabel) -> Option<Schedule> {
self.inner.remove(&label.intern())
}
/// Removes the (schedule, label) pair corresponding to the `label` from the map, returning it if it existed.
pub fn remove_entry(
&mut self,
label: impl ScheduleLabel,
) -> Option<(InternedScheduleLabel, Schedule)> {
self.inner.remove_entry(&label.intern())
}
/// Does a schedule with the provided label already exist?
pub fn contains(&self, label: impl ScheduleLabel) -> bool {
self.inner.contains_key(&label.intern())
}
/// Returns a reference to the schedule associated with `label`, if it exists.
pub fn get(&self, label: impl ScheduleLabel) -> Option<&Schedule> {
self.inner.get(&label.intern())
}
/// Returns a mutable reference to the schedule associated with `label`, if it exists.
pub fn get_mut(&mut self, label: impl ScheduleLabel) -> Option<&mut Schedule> {
self.inner.get_mut(&label.intern())
}
/// Returns an iterator over all schedules. Iteration order is undefined.
pub fn iter(&self) -> impl Iterator<Item = (&dyn ScheduleLabel, &Schedule)> {
self.inner
.iter()
.map(|(label, schedule)| (&**label, schedule))
}
/// Returns an iterator over mutable references to all schedules. Iteration order is undefined.
pub fn iter_mut(&mut self) -> impl Iterator<Item = (&dyn ScheduleLabel, &mut Schedule)> {
self.inner
.iter_mut()
.map(|(label, schedule)| (&**label, schedule))
}
/// Iterates the change ticks of all systems in all stored schedules and clamps any older than
/// [`MAX_CHANGE_AGE`](crate::change_detection::MAX_CHANGE_AGE).
/// This prevents overflow and thus prevents false positives.
pub(crate) fn check_change_ticks(&mut self, change_tick: Tick) {
#[cfg(feature = "trace")]
let _all_span = info_span!("check stored schedule ticks").entered();
// label used when trace feature is enabled
#[allow(unused_variables)]
for (label, schedule) in &mut self.inner {
#[cfg(feature = "trace")]
let name = format!("{label:?}");
#[cfg(feature = "trace")]
let _one_span = info_span!("check schedule ticks", name = &name).entered();
schedule.check_change_ticks(change_tick);
}
}
/// Applies the provided [`ScheduleBuildSettings`] to all schedules.
pub fn configure_schedules(&mut self, schedule_build_settings: ScheduleBuildSettings) {
for (_, schedule) in &mut self.inner {
schedule.set_build_settings(schedule_build_settings.clone());
}
}
/// Ignore system order ambiguities caused by conflicts on [`Component`]s of type `T`.
pub fn allow_ambiguous_component<T: Component>(&mut self, world: &mut World) {
self.ignored_scheduling_ambiguities
.insert(world.init_component::<T>());
}
/// Ignore system order ambiguities caused by conflicts on [`Resource`]s of type `T`.
pub fn allow_ambiguous_resource<T: Resource>(&mut self, world: &mut World) {
self.ignored_scheduling_ambiguities
.insert(world.components.init_resource::<T>());
}
/// Iterate through the [`ComponentId`]'s that will be ignored.
pub fn iter_ignored_ambiguities(&self) -> impl Iterator<Item = &ComponentId> + '_ {
self.ignored_scheduling_ambiguities.iter()
}
/// Prints the names of the components and resources with [`info`]
///
/// May panic or retrieve incorrect names if [`Components`] is not from the same
/// world
pub fn print_ignored_ambiguities(&self, components: &Components) {
let mut message =
"System order ambiguities caused by conflicts on the following types are ignored:\n"
.to_string();
for id in self.iter_ignored_ambiguities() {
writeln!(message, "{}", components.get_name(*id).unwrap()).unwrap();
}
info!("{}", message);
}
}
fn make_executor(kind: ExecutorKind) -> Box<dyn SystemExecutor> {
match kind {
ExecutorKind::Simple => Box::new(SimpleExecutor::new()),
ExecutorKind::SingleThreaded => Box::new(SingleThreadedExecutor::new()),
ExecutorKind::MultiThreaded => Box::new(MultiThreadedExecutor::new()),
}
}
/// Chain systems into dependencies
#[derive(PartialEq)]
pub enum Chain {
/// Run nodes in order. If there are deferred parameters in preceeding systems a
/// [`apply_deferred`] will be added on the edge.
Yes,
/// Run nodes in order. This will not add [`apply_deferred`] between nodes.
YesIgnoreDeferred,
/// Nodes are allowed to run in any order.
No,
}
/// A collection of systems, and the metadata and executor needed to run them
/// in a certain order under certain conditions.
///
/// # Example
/// Here is an example of a `Schedule` running a "Hello world" system:
/// ```
/// # use bevy_ecs::prelude::*;
/// fn hello_world() { println!("Hello world!") }
///
/// fn main() {
/// let mut world = World::new();
/// let mut schedule = Schedule::default();
/// schedule.add_systems(hello_world);
///
/// schedule.run(&mut world);
/// }
/// ```
///
/// A schedule can also run several systems in an ordered way:
/// ```
/// # use bevy_ecs::prelude::*;
/// fn system_one() { println!("System 1 works!") }
/// fn system_two() { println!("System 2 works!") }
/// fn system_three() { println!("System 3 works!") }
///
/// fn main() {
/// let mut world = World::new();
/// let mut schedule = Schedule::default();
/// schedule.add_systems((
/// system_two,
/// system_one.before(system_two),
/// system_three.after(system_two),
/// ));
///
/// schedule.run(&mut world);
/// }
/// ```
pub struct Schedule {
name: InternedScheduleLabel,
graph: ScheduleGraph,
executable: SystemSchedule,
executor: Box<dyn SystemExecutor>,
executor_initialized: bool,
}
#[derive(ScheduleLabel, Hash, PartialEq, Eq, Debug, Clone)]
struct DefaultSchedule;
impl Default for Schedule {
/// Creates a schedule with a default label. Only use in situations where
/// you don't care about the [`ScheduleLabel`]. Inserting a default schedule
/// into the world risks overwriting another schedule. For most situations
/// you should use [`Schedule::new`].
fn default() -> Self {
Self::new(DefaultSchedule)
}
}
impl Schedule {
/// Constructs an empty `Schedule`.
pub fn new(label: impl ScheduleLabel) -> Self {
Self {
name: label.intern(),
graph: ScheduleGraph::new(),
executable: SystemSchedule::new(),
executor: make_executor(ExecutorKind::default()),
executor_initialized: false,
}
}
/// Add a collection of systems to the schedule.
pub fn add_systems<M>(&mut self, systems: impl IntoSystemConfigs<M>) -> &mut Self {
self.graph.process_configs(systems.into_configs(), false);
self
}
/// Configures a collection of system sets in this schedule, adding them if they does not exist.
#[track_caller]
pub fn configure_sets(&mut self, sets: impl IntoSystemSetConfigs) -> &mut Self {
self.graph.configure_sets(sets);
self
}
/// Changes miscellaneous build settings.
pub fn set_build_settings(&mut self, settings: ScheduleBuildSettings) -> &mut Self {
self.graph.settings = settings;
self
}
/// Returns the schedule's current `ScheduleBuildSettings`.
pub fn get_build_settings(&self) -> ScheduleBuildSettings {
self.graph.settings.clone()
}
/// Returns the schedule's current execution strategy.
pub fn get_executor_kind(&self) -> ExecutorKind {
self.executor.kind()
}
/// Sets the schedule's execution strategy.
pub fn set_executor_kind(&mut self, executor: ExecutorKind) -> &mut Self {
if executor != self.executor.kind() {
self.executor = make_executor(executor);
self.executor_initialized = false;
}
self
}
/// Set whether the schedule applies deferred system buffers on final time or not. This is a catch-all
/// in case a system uses commands but was not explicitly ordered before an instance of
/// [`apply_deferred`]. By default this
/// setting is true, but may be disabled if needed.
pub fn set_apply_final_deferred(&mut self, apply_final_deferred: bool) -> &mut Self {
self.executor.set_apply_final_deferred(apply_final_deferred);
self
}
/// Runs all systems in this schedule on the `world`, using its current execution strategy.
pub fn run(&mut self, world: &mut World) {
#[cfg(feature = "trace")]
let _span = info_span!("schedule", name = ?self.name).entered();
world.check_change_ticks();
self.initialize(world)
.unwrap_or_else(|e| panic!("Error when initializing schedule {:?}: {e}", self.name));
self.executor.run(&mut self.executable, world);
}
/// Initializes any newly-added systems and conditions, rebuilds the executable schedule,
/// and re-initializes the executor.
///
/// Moves all systems and run conditions out of the [`ScheduleGraph`].
pub fn initialize(&mut self, world: &mut World) -> Result<(), ScheduleBuildError> {
if self.graph.changed {
self.graph.initialize(world);
let ignored_ambiguities = world
.get_resource_or_insert_with::<Schedules>(Schedules::default)
.ignored_scheduling_ambiguities
.clone();
self.graph.update_schedule(
&mut self.executable,
world.components(),
&ignored_ambiguities,
self.name,
)?;
self.graph.changed = false;
self.executor_initialized = false;
}
if !self.executor_initialized {
self.executor.init(&self.executable);
self.executor_initialized = true;
}
Ok(())
}
/// Returns the [`ScheduleGraph`].
pub fn graph(&self) -> &ScheduleGraph {
&self.graph
}
/// Returns a mutable reference to the [`ScheduleGraph`].
pub fn graph_mut(&mut self) -> &mut ScheduleGraph {
&mut self.graph
}
/// Iterates the change ticks of all systems in the schedule and clamps any older than
/// [`MAX_CHANGE_AGE`](crate::change_detection::MAX_CHANGE_AGE).
/// This prevents overflow and thus prevents false positives.
pub(crate) fn check_change_ticks(&mut self, change_tick: Tick) {
for system in &mut self.executable.systems {
if !is_apply_deferred(system) {
system.check_change_tick(change_tick);
}
}
for conditions in &mut self.executable.system_conditions {
for system in conditions {
system.check_change_tick(change_tick);
}
}
for conditions in &mut self.executable.set_conditions {
for system in conditions {
system.check_change_tick(change_tick);
}
}
}
/// Directly applies any accumulated [`Deferred`](crate::system::Deferred) system parameters (like [`Commands`](crate::prelude::Commands)) to the `world`.
///
/// Like always, deferred system parameters are applied in the "topological sort order" of the schedule graph.
/// As a result, buffers from one system are only guaranteed to be applied before those of other systems
/// if there is an explicit system ordering between the two systems.
///
/// This is used in rendering to extract data from the main world, storing the data in system buffers,
/// before applying their buffers in a different world.
pub fn apply_deferred(&mut self, world: &mut World) {
for system in &mut self.executable.systems {
system.apply_deferred(world);
}
}
}
/// A directed acyclic graph structure.
#[derive(Default)]
pub struct Dag {
/// A directed graph.
graph: DiGraphMap<NodeId, ()>,
/// A cached topological ordering of the graph.
topsort: Vec<NodeId>,
}
impl Dag {
fn new() -> Self {
Self {
graph: DiGraphMap::new(),
topsort: Vec::new(),
}
}
/// The directed graph of the stored systems, connected by their ordering dependencies.
pub fn graph(&self) -> &DiGraphMap<NodeId, ()> {
&self.graph
}
/// A cached topological ordering of the graph.
///
/// The order is determined by the ordering dependencies between systems.
pub fn cached_topsort(&self) -> &[NodeId] {
&self.topsort
}
}
/// A [`SystemSet`] with metadata, stored in a [`ScheduleGraph`].
struct SystemSetNode {
inner: InternedSystemSet,
}
impl SystemSetNode {
pub fn new(set: InternedSystemSet) -> Self {
Self { inner: set }
}
pub fn name(&self) -> String {
format!("{:?}", &self.inner)
}
pub fn is_system_type(&self) -> bool {
self.inner.system_type().is_some()
}
pub fn is_anonymous(&self) -> bool {
self.inner.is_anonymous()
}
}
/// A [`BoxedSystem`] with metadata, stored in a [`ScheduleGraph`].
struct SystemNode {
inner: Option<BoxedSystem>,
}
impl SystemNode {
pub fn new(system: BoxedSystem) -> Self {
Self {
inner: Some(system),
}
}
pub fn get(&self) -> Option<&BoxedSystem> {
self.inner.as_ref()
}
pub fn get_mut(&mut self) -> Option<&mut BoxedSystem> {
self.inner.as_mut()
}
}
/// Metadata for a [`Schedule`].
#[derive(Default)]
pub struct ScheduleGraph {
systems: Vec<SystemNode>,
system_conditions: Vec<Vec<BoxedCondition>>,
system_sets: Vec<SystemSetNode>,
system_set_conditions: Vec<Vec<BoxedCondition>>,
system_set_ids: HashMap<InternedSystemSet, NodeId>,
uninit: Vec<(NodeId, usize)>,
hierarchy: Dag,
dependency: Dag,
ambiguous_with: UnGraphMap<NodeId, ()>,
ambiguous_with_all: HashSet<NodeId>,
conflicting_systems: Vec<(NodeId, NodeId, Vec<ComponentId>)>,
anonymous_sets: usize,
changed: bool,
settings: ScheduleBuildSettings,
no_sync_edges: BTreeSet<(NodeId, NodeId)>,
auto_sync_node_ids: HashMap<u32, NodeId>,
}
impl ScheduleGraph {
/// Creates an empty [`ScheduleGraph`] with default settings.
pub fn new() -> Self {
Self {
systems: Vec::new(),
system_conditions: Vec::new(),
system_sets: Vec::new(),
system_set_conditions: Vec::new(),
system_set_ids: HashMap::new(),
uninit: Vec::new(),
hierarchy: Dag::new(),
dependency: Dag::new(),
ambiguous_with: UnGraphMap::new(),
ambiguous_with_all: HashSet::new(),
conflicting_systems: Vec::new(),
anonymous_sets: 0,
changed: false,
settings: default(),
no_sync_edges: BTreeSet::new(),
auto_sync_node_ids: HashMap::new(),
}
}
/// Returns the system at the given [`NodeId`], if it exists.
pub fn get_system_at(&self, id: NodeId) -> Option<&dyn System<In = (), Out = ()>> {
if !id.is_system() {
return None;
}
self.systems
.get(id.index())
.and_then(|system| system.inner.as_deref())
}
/// Returns the system at the given [`NodeId`].
///
/// Panics if it doesn't exist.
#[track_caller]
pub fn system_at(&self, id: NodeId) -> &dyn System<In = (), Out = ()> {
self.get_system_at(id)
.ok_or_else(|| format!("system with id {id:?} does not exist in this Schedule"))
.unwrap()
}
/// Returns the set at the given [`NodeId`], if it exists.
pub fn get_set_at(&self, id: NodeId) -> Option<&dyn SystemSet> {
if !id.is_set() {
return None;
}
self.system_sets.get(id.index()).map(|set| &*set.inner)
}
/// Returns the set at the given [`NodeId`].
///
/// Panics if it doesn't exist.
#[track_caller]
pub fn set_at(&self, id: NodeId) -> &dyn SystemSet {
self.get_set_at(id)
.ok_or_else(|| format!("set with id {id:?} does not exist in this Schedule"))
.unwrap()
}
/// Returns an iterator over all systems in this schedule.
pub fn systems(
&self,
) -> impl Iterator<Item = (NodeId, &dyn System<In = (), Out = ()>, &[BoxedCondition])> {
self.systems
.iter()
.zip(self.system_conditions.iter())
.enumerate()
.filter_map(|(i, (system_node, condition))| {
let system = system_node.inner.as_deref()?;
Some((NodeId::System(i), system, condition.as_slice()))
})
}
/// Returns an iterator over all system sets in this schedule.
pub fn system_sets(&self) -> impl Iterator<Item = (NodeId, &dyn SystemSet, &[BoxedCondition])> {
self.system_set_ids.iter().map(|(_, &node_id)| {
let set_node = &self.system_sets[node_id.index()];
let set = &*set_node.inner;
let conditions = self.system_set_conditions[node_id.index()].as_slice();
(node_id, set, conditions)
})
}
/// Returns the [`Dag`] of the hierarchy.
///
/// The hierarchy is a directed acyclic graph of the systems and sets,
/// where an edge denotes that a system or set is the child of another set.
pub fn hierarchy(&self) -> &Dag {
&self.hierarchy
}
/// Returns the [`Dag`] of the dependencies in the schedule.
///
/// Nodes in this graph are systems and sets, and edges denote that
/// a system or set has to run before another system or set.
pub fn dependency(&self) -> &Dag {
&self.dependency
}
/// Returns the list of systems that conflict with each other, i.e. have ambiguities in their access.
///
/// If the `Vec<ComponentId>` is empty, the systems conflict on [`World`] access.
/// Must be called after [`ScheduleGraph::build_schedule`] to be non-empty.
pub fn conflicting_systems(&self) -> &[(NodeId, NodeId, Vec<ComponentId>)] {
&self.conflicting_systems
}
/// Adds the config nodes to the graph.
///
/// `collect_nodes` controls whether the `NodeId`s of the processed config nodes are stored in the returned [`ProcessConfigsResult`].
/// `process_config` is the function which processes each individual config node and returns a corresponding `NodeId`.
///
/// The fields on the returned [`ProcessConfigsResult`] are:
/// - `nodes`: a vector of all node ids contained in the nested `NodeConfigs`
/// - `densely_chained`: a boolean that is true if all nested nodes are linearly chained (with successive `after` orderings) in the order they are defined
#[track_caller]
fn process_configs<T: ProcessNodeConfig>(
&mut self,
configs: NodeConfigs<T>,
collect_nodes: bool,
) -> ProcessConfigsResult {
match configs {
NodeConfigs::NodeConfig(config) => {
let node_id = T::process_config(self, config);
if collect_nodes {
ProcessConfigsResult {
densely_chained: true,
nodes: vec![node_id],
}
} else {
ProcessConfigsResult {
densely_chained: true,
nodes: Vec::new(),
}
}
}
NodeConfigs::Configs {
mut configs,
collective_conditions,
chained,
} => {
let more_than_one_entry = configs.len() > 1;
if !collective_conditions.is_empty() {
if more_than_one_entry {
let set = self.create_anonymous_set();
for config in &mut configs {
config.in_set_inner(set.intern());
}
let mut set_config = SystemSetConfig::new(set.intern());
set_config.conditions.extend(collective_conditions);
self.configure_set_inner(set_config).unwrap();
} else {
for condition in collective_conditions {
configs[0].run_if_dyn(condition);
}
}
}
let mut config_iter = configs.into_iter();
let mut nodes_in_scope = Vec::new();
let mut densely_chained = true;
if chained == Chain::Yes || chained == Chain::YesIgnoreDeferred {
let Some(prev) = config_iter.next() else {
return ProcessConfigsResult {
nodes: Vec::new(),
densely_chained: true,
};
};
let mut previous_result = self.process_configs(prev, true);
densely_chained = previous_result.densely_chained;
for current in config_iter {
let current_result = self.process_configs(current, true);
densely_chained = densely_chained && current_result.densely_chained;
match (
previous_result.densely_chained,
current_result.densely_chained,
) {
// Both groups are "densely" chained, so we can simplify the graph by only
// chaining the last in the previous list to the first in the current list
(true, true) => {
let last_in_prev = previous_result.nodes.last().unwrap();
let first_in_current = current_result.nodes.first().unwrap();
self.dependency.graph.add_edge(
*last_in_prev,
*first_in_current,
(),
);
if chained == Chain::YesIgnoreDeferred {
self.no_sync_edges
.insert((*last_in_prev, *first_in_current));
}
}
// The previous group is "densely" chained, so we can simplify the graph by only
// chaining the last item from the previous list to every item in the current list
(true, false) => {
let last_in_prev = previous_result.nodes.last().unwrap();
for current_node in &current_result.nodes {
self.dependency.graph.add_edge(
*last_in_prev,
*current_node,
(),
);
if chained == Chain::YesIgnoreDeferred {
self.no_sync_edges.insert((*last_in_prev, *current_node));
}
}
}
// The current list is currently "densely" chained, so we can simplify the graph by
// only chaining every item in the previous list to the first item in the current list
(false, true) => {
let first_in_current = current_result.nodes.first().unwrap();
for previous_node in &previous_result.nodes {
self.dependency.graph.add_edge(
*previous_node,
*first_in_current,
(),
);
if chained == Chain::YesIgnoreDeferred {
self.no_sync_edges
.insert((*previous_node, *first_in_current));
}
}
}
// Neither of the lists are "densely" chained, so we must chain every item in the first
// list to every item in the second list
(false, false) => {
for previous_node in &previous_result.nodes {
for current_node in &current_result.nodes {
self.dependency.graph.add_edge(
*previous_node,
*current_node,
(),
);
if chained == Chain::YesIgnoreDeferred {
self.no_sync_edges
.insert((*previous_node, *current_node));
}
}
}
}
}
if collect_nodes {
nodes_in_scope.append(&mut previous_result.nodes);
}
previous_result = current_result;
}
// ensure the last config's nodes are added
if collect_nodes {
nodes_in_scope.append(&mut previous_result.nodes);
}
} else {
for config in config_iter {
let result = self.process_configs(config, collect_nodes);
densely_chained = densely_chained && result.densely_chained;
if collect_nodes {
nodes_in_scope.extend(result.nodes);
}
}
// an "unchained" SystemConfig is only densely chained if it has exactly one densely chained entry
if more_than_one_entry {
densely_chained = false;
}
}
ProcessConfigsResult {
nodes: nodes_in_scope,
densely_chained,
}
}
}
}
fn add_system_inner(&mut self, config: SystemConfig) -> Result<NodeId, ScheduleBuildError> {
let id = NodeId::System(self.systems.len());
// graph updates are immediate
self.update_graphs(id, config.graph_info)?;
// system init has to be deferred (need `&mut World`)
self.uninit.push((id, 0));
self.systems.push(SystemNode::new(config.node));
self.system_conditions.push(config.conditions);
Ok(id)
}
#[track_caller]
fn configure_sets(&mut self, sets: impl IntoSystemSetConfigs) {
self.process_configs(sets.into_configs(), false);
}
fn configure_set_inner(&mut self, set: SystemSetConfig) -> Result<NodeId, ScheduleBuildError> {
let SystemSetConfig {
node: set,
graph_info,
mut conditions,
} = set;
let id = match self.system_set_ids.get(&set) {
Some(&id) => id,
None => self.add_set(set),
};
// graph updates are immediate
self.update_graphs(id, graph_info)?;
// system init has to be deferred (need `&mut World`)
let system_set_conditions = &mut self.system_set_conditions[id.index()];
self.uninit.push((id, system_set_conditions.len()));
system_set_conditions.append(&mut conditions);
Ok(id)
}
fn add_set(&mut self, set: InternedSystemSet) -> NodeId {
let id = NodeId::Set(self.system_sets.len());
self.system_sets.push(SystemSetNode::new(set));
self.system_set_conditions.push(Vec::new());
self.system_set_ids.insert(set, id);
id
}
fn check_set(&mut self, id: &NodeId, set: InternedSystemSet) -> Result<(), ScheduleBuildError> {
match self.system_set_ids.get(&set) {
Some(set_id) => {
if id == set_id {
return Err(ScheduleBuildError::HierarchyLoop(self.get_node_name(id)));
}
}
None => {
self.add_set(set);
}
}
Ok(())
}
fn create_anonymous_set(&mut self) -> AnonymousSet {
let id = self.anonymous_sets;
self.anonymous_sets += 1;
AnonymousSet::new(id)
}
fn check_sets(
&mut self,
id: &NodeId,
graph_info: &GraphInfo,
) -> Result<(), ScheduleBuildError> {
for &set in &graph_info.sets {
self.check_set(id, set)?;
}
Ok(())
}
fn check_edges(
&mut self,
id: &NodeId,
graph_info: &GraphInfo,
) -> Result<(), ScheduleBuildError> {
for Dependency { kind: _, set } in &graph_info.dependencies {
match self.system_set_ids.get(set) {
Some(set_id) => {
if id == set_id {
return Err(ScheduleBuildError::DependencyLoop(self.get_node_name(id)));
}
}
None => {
self.add_set(*set);
}
}
}
if let Ambiguity::IgnoreWithSet(ambiguous_with) = &graph_info.ambiguous_with {
for set in ambiguous_with {
if !self.system_set_ids.contains_key(set) {
self.add_set(*set);
}
}
}
Ok(())
}
fn update_graphs(
&mut self,
id: NodeId,
graph_info: GraphInfo,
) -> Result<(), ScheduleBuildError> {
self.check_sets(&id, &graph_info)?;
self.check_edges(&id, &graph_info)?;
self.changed = true;
let GraphInfo {
sets,
dependencies,
ambiguous_with,
..
} = graph_info;
self.hierarchy.graph.add_node(id);
self.dependency.graph.add_node(id);
for set in sets.into_iter().map(|set| self.system_set_ids[&set]) {
self.hierarchy.graph.add_edge(set, id, ());
// ensure set also appears in dependency graph
self.dependency.graph.add_node(set);
}
for (kind, set) in dependencies
.into_iter()
.map(|Dependency { kind, set }| (kind, self.system_set_ids[&set]))
{
let (lhs, rhs) = match kind {
DependencyKind::Before => (id, set),
DependencyKind::BeforeNoSync => {
self.no_sync_edges.insert((id, set));
(id, set)
}
DependencyKind::After => (set, id),
DependencyKind::AfterNoSync => {
self.no_sync_edges.insert((set, id));
(set, id)
}
};
self.dependency.graph.add_edge(lhs, rhs, ());
// ensure set also appears in hierarchy graph
self.hierarchy.graph.add_node(set);
}
match ambiguous_with {
Ambiguity::Check => (),
Ambiguity::IgnoreWithSet(ambiguous_with) => {
for set in ambiguous_with
.into_iter()
.map(|set| self.system_set_ids[&set])
{
self.ambiguous_with.add_edge(id, set, ());
}
}
Ambiguity::IgnoreAll => {
self.ambiguous_with_all.insert(id);
}
}
Ok(())
}
/// Initializes any newly-added systems and conditions by calling [`System::initialize`]
pub fn initialize(&mut self, world: &mut World) {
for (id, i) in self.uninit.drain(..) {
match id {
NodeId::System(index) => {
self.systems[index].get_mut().unwrap().initialize(world);
for condition in &mut self.system_conditions[index] {
condition.initialize(world);
}
}
NodeId::Set(index) => {
for condition in self.system_set_conditions[index].iter_mut().skip(i) {
condition.initialize(world);
}
}
}
}
}
/// Build a [`SystemSchedule`] optimized for scheduler access from the [`ScheduleGraph`].
///
/// This method also
/// - checks for dependency or hierarchy cycles
/// - checks for system access conflicts and reports ambiguities
pub fn build_schedule(
&mut self,
components: &Components,
schedule_label: InternedScheduleLabel,
ignored_ambiguities: &BTreeSet<ComponentId>,
) -> Result<SystemSchedule, ScheduleBuildError> {
// check hierarchy for cycles
self.hierarchy.topsort =
self.topsort_graph(&self.hierarchy.graph, ReportCycles::Hierarchy)?;
let hier_results = check_graph(&self.hierarchy.graph, &self.hierarchy.topsort);
self.optionally_check_hierarchy_conflicts(&hier_results.transitive_edges, schedule_label)?;
// remove redundant edges
self.hierarchy.graph = hier_results.transitive_reduction;
// check dependencies for cycles
self.dependency.topsort =
self.topsort_graph(&self.dependency.graph, ReportCycles::Dependency)?;
// check for systems or system sets depending on sets they belong to
let dep_results = check_graph(&self.dependency.graph, &self.dependency.topsort);
self.check_for_cross_dependencies(&dep_results, &hier_results.connected)?;
// map all system sets to their systems
// go in reverse topological order (bottom-up) for efficiency
let (set_systems, set_system_bitsets) =
self.map_sets_to_systems(&self.hierarchy.topsort, &self.hierarchy.graph);
self.check_order_but_intersect(&dep_results.connected, &set_system_bitsets)?;
// check that there are no edges to system-type sets that have multiple instances
self.check_system_type_set_ambiguity(&set_systems)?;
let mut dependency_flattened = self.get_dependency_flattened(&set_systems);
// modify graph with auto sync points
if self.settings.auto_insert_apply_deferred {
dependency_flattened = self.auto_insert_apply_deferred(&mut dependency_flattened)?;
}
// topsort
let mut dependency_flattened_dag = Dag {
topsort: self.topsort_graph(&dependency_flattened, ReportCycles::Dependency)?,
graph: dependency_flattened,
};
let flat_results = check_graph(
&dependency_flattened_dag.graph,
&dependency_flattened_dag.topsort,
);
// remove redundant edges
dependency_flattened_dag.graph = flat_results.transitive_reduction;
// flatten: combine `in_set` with `ambiguous_with` information
let ambiguous_with_flattened = self.get_ambiguous_with_flattened(&set_systems);
// check for conflicts
let conflicting_systems = self.get_conflicting_systems(
&flat_results.disconnected,
&ambiguous_with_flattened,
ignored_ambiguities,
);
self.optionally_check_conflicts(&conflicting_systems, components, schedule_label)?;
self.conflicting_systems = conflicting_systems;
// build the schedule
Ok(self.build_schedule_inner(dependency_flattened_dag, hier_results.reachable))
}
// modify the graph to have sync nodes for any dependants after a system with deferred system params
fn auto_insert_apply_deferred(
&mut self,
dependency_flattened: &mut GraphMap<NodeId, (), Directed>,
) -> Result<GraphMap<NodeId, (), Directed>, ScheduleBuildError> {
let mut sync_point_graph = dependency_flattened.clone();
let topo = self.topsort_graph(dependency_flattened, ReportCycles::Dependency)?;
// calculate the number of sync points each sync point is from the beginning of the graph
// use the same sync point if the distance is the same
let mut distances: HashMap<usize, Option<u32>> = HashMap::with_capacity(topo.len());
for node in &topo {
let add_sync_after = self.systems[node.index()].get().unwrap().has_deferred();
for target in dependency_flattened.neighbors_directed(*node, Outgoing) {
let add_sync_on_edge = add_sync_after
&& !is_apply_deferred(self.systems[target.index()].get().unwrap())
&& !self.no_sync_edges.contains(&(*node, target));
let weight = if add_sync_on_edge { 1 } else { 0 };
let distance = distances
.get(&target.index())
.unwrap_or(&None)
.or(Some(0))
.map(|distance| {
distance.max(
distances.get(&node.index()).unwrap_or(&None).unwrap_or(0) + weight,
)
});
distances.insert(target.index(), distance);
if add_sync_on_edge {
let sync_point = self.get_sync_point(distances[&target.index()].unwrap());
sync_point_graph.add_edge(*node, sync_point, ());
sync_point_graph.add_edge(sync_point, target, ());
// edge is now redundant
sync_point_graph.remove_edge(*node, target);
}
}
}
Ok(sync_point_graph)
}
/// add an [`apply_deferred`] system with no config
fn add_auto_sync(&mut self) -> NodeId {
let id = NodeId::System(self.systems.len());
self.systems
.push(SystemNode::new(Box::new(IntoSystem::into_system(
apply_deferred,
))));
self.system_conditions.push(Vec::new());
// ignore ambiguities with auto sync points
// They aren't under user control, so no one should know or care.
self.ambiguous_with_all.insert(id);
id
}
/// Returns the `NodeId` of the cached auto sync point. Will create
/// a new one if needed.
fn get_sync_point(&mut self, distance: u32) -> NodeId {
self.auto_sync_node_ids
.get(&distance)
.copied()
.or_else(|| {
let node_id = self.add_auto_sync();
self.auto_sync_node_ids.insert(distance, node_id);
Some(node_id)
})
.unwrap()
}
fn map_sets_to_systems(
&self,
hierarchy_topsort: &[NodeId],
hierarchy_graph: &GraphMap<NodeId, (), Directed>,
) -> (HashMap<NodeId, Vec<NodeId>>, HashMap<NodeId, FixedBitSet>) {
let mut set_systems: HashMap<NodeId, Vec<NodeId>> =
HashMap::with_capacity(self.system_sets.len());
let mut set_system_bitsets = HashMap::with_capacity(self.system_sets.len());
for &id in hierarchy_topsort.iter().rev() {
if id.is_system() {
continue;
}
let mut systems = Vec::new();
let mut system_bitset = FixedBitSet::with_capacity(self.systems.len());
for child in hierarchy_graph.neighbors_directed(id, Outgoing) {
match child {
NodeId::System(_) => {
systems.push(child);
system_bitset.insert(child.index());
}
NodeId::Set(_) => {
let child_systems = set_systems.get(&child).unwrap();
let child_system_bitset = set_system_bitsets.get(&child).unwrap();
systems.extend_from_slice(child_systems);
system_bitset.union_with(child_system_bitset);
}
}
}
set_systems.insert(id, systems);
set_system_bitsets.insert(id, system_bitset);
}
(set_systems, set_system_bitsets)
}
fn get_dependency_flattened(
&mut self,
set_systems: &HashMap<NodeId, Vec<NodeId>>,
) -> GraphMap<NodeId, (), Directed> {
// flatten: combine `in_set` with `before` and `after` information
// have to do it like this to preserve transitivity
let mut dependency_flattened = self.dependency.graph.clone();
let mut temp = Vec::new();
for (&set, systems) in set_systems {
if systems.is_empty() {
// collapse dependencies for empty sets
for a in dependency_flattened.neighbors_directed(set, Incoming) {
for b in dependency_flattened.neighbors_directed(set, Outgoing) {
if self.no_sync_edges.contains(&(a, set))
&& self.no_sync_edges.contains(&(set, b))
{
self.no_sync_edges.insert((a, b));
}
temp.push((a, b));
}
}
} else {
for a in dependency_flattened.neighbors_directed(set, Incoming) {
for &sys in systems {
if self.no_sync_edges.contains(&(a, set)) {
self.no_sync_edges.insert((a, sys));
}
temp.push((a, sys));
}
}
for b in dependency_flattened.neighbors_directed(set, Outgoing) {
for &sys in systems {
if self.no_sync_edges.contains(&(set, b)) {
self.no_sync_edges.insert((sys, b));
}
temp.push((sys, b));
}
}
}
dependency_flattened.remove_node(set);
for (a, b) in temp.drain(..) {
dependency_flattened.add_edge(a, b, ());
}
}
dependency_flattened
}
fn get_ambiguous_with_flattened(
&self,
set_systems: &HashMap<NodeId, Vec<NodeId>>,
) -> GraphMap<NodeId, (), Undirected> {
let mut ambiguous_with_flattened = UnGraphMap::new();
for (lhs, rhs, _) in self.ambiguous_with.all_edges() {
match (lhs, rhs) {
(NodeId::System(_), NodeId::System(_)) => {
ambiguous_with_flattened.add_edge(lhs, rhs, ());
}
(NodeId::Set(_), NodeId::System(_)) => {
for &lhs_ in set_systems.get(&lhs).unwrap_or(&Vec::new()) {
ambiguous_with_flattened.add_edge(lhs_, rhs, ());
}
}
(NodeId::System(_), NodeId::Set(_)) => {
for &rhs_ in set_systems.get(&rhs).unwrap_or(&Vec::new()) {
ambiguous_with_flattened.add_edge(lhs, rhs_, ());
}
}
(NodeId::Set(_), NodeId::Set(_)) => {
for &lhs_ in set_systems.get(&lhs).unwrap_or(&Vec::new()) {
for &rhs_ in set_systems.get(&rhs).unwrap_or(&vec![]) {
ambiguous_with_flattened.add_edge(lhs_, rhs_, ());
}
}
}
}
}
ambiguous_with_flattened
}
fn get_conflicting_systems(
&self,
flat_results_disconnected: &Vec<(NodeId, NodeId)>,
ambiguous_with_flattened: &GraphMap<NodeId, (), Undirected>,
ignored_ambiguities: &BTreeSet<ComponentId>,
) -> Vec<(NodeId, NodeId, Vec<ComponentId>)> {
let mut conflicting_systems = Vec::new();
for &(a, b) in flat_results_disconnected {
if ambiguous_with_flattened.contains_edge(a, b)
|| self.ambiguous_with_all.contains(&a)
|| self.ambiguous_with_all.contains(&b)
{
continue;
}
let system_a = self.systems[a.index()].get().unwrap();
let system_b = self.systems[b.index()].get().unwrap();
if system_a.is_exclusive() || system_b.is_exclusive() {
conflicting_systems.push((a, b, Vec::new()));
} else {
let access_a = system_a.component_access();
let access_b = system_b.component_access();
if !access_a.is_compatible(access_b) {
let conflicts: Vec<_> = access_a
.get_conflicts(access_b)
.into_iter()
.filter(|id| !ignored_ambiguities.contains(id))
.collect();
if !conflicts.is_empty() {
conflicting_systems.push((a, b, conflicts));
}
}
}
}
conflicting_systems
}
fn build_schedule_inner(
&self,
dependency_flattened_dag: Dag,
hier_results_reachable: FixedBitSet,
) -> SystemSchedule {
let dg_system_ids = dependency_flattened_dag.topsort.clone();
let dg_system_idx_map = dg_system_ids
.iter()
.cloned()
.enumerate()
.map(|(i, id)| (id, i))
.collect::<HashMap<_, _>>();
let hg_systems = self
.hierarchy
.topsort
.iter()
.cloned()
.enumerate()
.filter(|&(_i, id)| id.is_system())
.collect::<Vec<_>>();
let (hg_set_with_conditions_idxs, hg_set_ids): (Vec<_>, Vec<_>) = self
.hierarchy
.topsort
.iter()
.cloned()
.enumerate()
.filter(|&(_i, id)| {
// ignore system sets that have no conditions
// ignore system type sets (already covered, they don't have conditions)
id.is_set() && !self.system_set_conditions[id.index()].is_empty()
})
.unzip();
let sys_count = self.systems.len();
let set_with_conditions_count = hg_set_ids.len();
let hg_node_count = self.hierarchy.graph.node_count();
// get the number of dependencies and the immediate dependents of each system
// (needed by multi-threaded executor to run systems in the correct order)
let mut system_dependencies = Vec::with_capacity(sys_count);
let mut system_dependents = Vec::with_capacity(sys_count);
for &sys_id in &dg_system_ids {
let num_dependencies = dependency_flattened_dag
.graph
.neighbors_directed(sys_id, Incoming)
.count();
let dependents = dependency_flattened_dag
.graph
.neighbors_directed(sys_id, Outgoing)
.map(|dep_id| dg_system_idx_map[&dep_id])
.collect::<Vec<_>>();
system_dependencies.push(num_dependencies);
system_dependents.push(dependents);
}
// get the rows and columns of the hierarchy graph's reachability matrix
// (needed to we can evaluate conditions in the correct order)
let mut systems_in_sets_with_conditions =
vec![FixedBitSet::with_capacity(sys_count); set_with_conditions_count];
for (i, &row) in hg_set_with_conditions_idxs.iter().enumerate() {
let bitset = &mut systems_in_sets_with_conditions[i];
for &(col, sys_id) in &hg_systems {
let idx = dg_system_idx_map[&sys_id];
let is_descendant = hier_results_reachable[index(row, col, hg_node_count)];
bitset.set(idx, is_descendant);
}
}
let mut sets_with_conditions_of_systems =
vec![FixedBitSet::with_capacity(set_with_conditions_count); sys_count];
for &(col, sys_id) in &hg_systems {
let i = dg_system_idx_map[&sys_id];
let bitset = &mut sets_with_conditions_of_systems[i];
for (idx, &row) in hg_set_with_conditions_idxs
.iter()
.enumerate()
.take_while(|&(_idx, &row)| row < col)
{
let is_ancestor = hier_results_reachable[index(row, col, hg_node_count)];
bitset.set(idx, is_ancestor);
}
}
SystemSchedule {
systems: Vec::with_capacity(sys_count),
system_conditions: Vec::with_capacity(sys_count),
set_conditions: Vec::with_capacity(set_with_conditions_count),
system_ids: dg_system_ids,
set_ids: hg_set_ids,
system_dependencies,
system_dependents,
sets_with_conditions_of_systems,
systems_in_sets_with_conditions,
}
}
fn update_schedule(
&mut self,
schedule: &mut SystemSchedule,
components: &Components,
ignored_ambiguities: &BTreeSet<ComponentId>,
schedule_label: InternedScheduleLabel,
) -> Result<(), ScheduleBuildError> {
if !self.uninit.is_empty() {
return Err(ScheduleBuildError::Uninitialized);
}
// move systems out of old schedule
for ((id, system), conditions) in schedule
.system_ids
.drain(..)
.zip(schedule.systems.drain(..))
.zip(schedule.system_conditions.drain(..))
{
self.systems[id.index()].inner = Some(system);
self.system_conditions[id.index()] = conditions;
}
for (id, conditions) in schedule
.set_ids
.drain(..)
.zip(schedule.set_conditions.drain(..))
{
self.system_set_conditions[id.index()] = conditions;
}
*schedule = self.build_schedule(components, schedule_label, ignored_ambiguities)?;
// move systems into new schedule
for &id in &schedule.system_ids {
let system = self.systems[id.index()].inner.take().unwrap();
let conditions = std::mem::take(&mut self.system_conditions[id.index()]);
schedule.systems.push(system);
schedule.system_conditions.push(conditions);
}
for &id in &schedule.set_ids {
let conditions = std::mem::take(&mut self.system_set_conditions[id.index()]);
schedule.set_conditions.push(conditions);
}
Ok(())
}
}
/// Values returned by [`ScheduleGraph::process_configs`]
struct ProcessConfigsResult {
/// All nodes contained inside this process_configs call's [`NodeConfigs`] hierarchy,
/// if `ancestor_chained` is true
nodes: Vec<NodeId>,
/// True if and only if all nodes are "densely chained", meaning that all nested nodes
/// are linearly chained (as if `after` system ordering had been applied between each node)
/// in the order they are defined
densely_chained: bool,
}
/// Trait used by [`ScheduleGraph::process_configs`] to process a single [`NodeConfig`].
trait ProcessNodeConfig: Sized {
/// Process a single [`NodeConfig`].
fn process_config(schedule_graph: &mut ScheduleGraph, config: NodeConfig<Self>) -> NodeId;
}
impl ProcessNodeConfig for BoxedSystem {
fn process_config(schedule_graph: &mut ScheduleGraph, config: NodeConfig<Self>) -> NodeId {
schedule_graph.add_system_inner(config).unwrap()
}
}
impl ProcessNodeConfig for InternedSystemSet {
fn process_config(schedule_graph: &mut ScheduleGraph, config: NodeConfig<Self>) -> NodeId {
schedule_graph.configure_set_inner(config).unwrap()
}
}
/// Used to select the appropriate reporting function.
enum ReportCycles {
Hierarchy,
Dependency,
}
// methods for reporting errors
impl ScheduleGraph {
fn get_node_name(&self, id: &NodeId) -> String {
self.get_node_name_inner(id, self.settings.report_sets)
}
#[inline]
fn get_node_name_inner(&self, id: &NodeId, report_sets: bool) -> String {
let mut name = match id {
NodeId::System(_) => {
let name = self.systems[id.index()].get().unwrap().name().to_string();
if report_sets {
let sets = self.names_of_sets_containing_node(id);
if sets.is_empty() {
name
} else if sets.len() == 1 {
format!("{name} (in set {})", sets[0])
} else {
format!("{name} (in sets {})", sets.join(", "))
}
} else {
name
}
}
NodeId::Set(_) => {
let set = &self.system_sets[id.index()];
if set.is_anonymous() {
self.anonymous_set_name(id)
} else {
set.name()
}
}
};
if self.settings.use_shortnames {
name = bevy_utils::get_short_name(&name);
}
name
}
fn anonymous_set_name(&self, id: &NodeId) -> String {
format!(
"({})",
self.hierarchy
.graph
.edges_directed(*id, Outgoing)
// never get the sets of the members or this will infinite recurse when the report_sets setting is on.
.map(|(_, member_id, _)| self.get_node_name_inner(&member_id, false))
.reduce(|a, b| format!("{a}, {b}"))
.unwrap_or_default()
)
}
fn get_node_kind(&self, id: &NodeId) -> &'static str {
match id {
NodeId::System(_) => "system",
NodeId::Set(_) => "system set",
}
}
/// If [`ScheduleBuildSettings::hierarchy_detection`] is [`LogLevel::Ignore`] this check
/// is skipped.
fn optionally_check_hierarchy_conflicts(
&self,
transitive_edges: &[(NodeId, NodeId)],
schedule_label: InternedScheduleLabel,
) -> Result<(), ScheduleBuildError> {
if self.settings.hierarchy_detection == LogLevel::Ignore || transitive_edges.is_empty() {
return Ok(());
}
let message = self.get_hierarchy_conflicts_error_message(transitive_edges);
match self.settings.hierarchy_detection {
LogLevel::Ignore => unreachable!(),
LogLevel::Warn => {
error!(
"Schedule {schedule_label:?} has redundant edges:\n {}",
message
);
Ok(())
}
LogLevel::Error => Err(ScheduleBuildError::HierarchyRedundancy(message)),
}
}
fn get_hierarchy_conflicts_error_message(
&self,
transitive_edges: &[(NodeId, NodeId)],
) -> String {
let mut message = String::from("hierarchy contains redundant edge(s)");
for (parent, child) in transitive_edges {
writeln!(
message,
" -- {} `{}` cannot be child of set `{}`, longer path exists",
self.get_node_kind(child),
self.get_node_name(child),
self.get_node_name(parent),
)
.unwrap();
}
message
}
/// Tries to topologically sort `graph`.
///
/// If the graph is acyclic, returns [`Ok`] with the list of [`NodeId`] in a valid
/// topological order. If the graph contains cycles, returns [`Err`] with the list of
/// strongly-connected components that contain cycles (also in a valid topological order).
///
/// # Errors
///
/// If the graph contain cycles, then an error is returned.
fn topsort_graph(
&self,
graph: &DiGraphMap<NodeId, ()>,
report: ReportCycles,
) -> Result<Vec<NodeId>, ScheduleBuildError> {
// Tarjan's SCC algorithm returns elements in *reverse* topological order.
let mut tarjan_scc = TarjanScc::new();
let mut top_sorted_nodes = Vec::with_capacity(graph.node_count());
let mut sccs_with_cycles = Vec::new();
tarjan_scc.run(graph, |scc| {
// A strongly-connected component is a group of nodes who can all reach each other
// through one or more paths. If an SCC contains more than one node, there must be
// at least one cycle within them.
if scc.len() > 1 {
sccs_with_cycles.push(scc.to_vec());
}
top_sorted_nodes.extend_from_slice(scc);
});
if sccs_with_cycles.is_empty() {
// reverse to get topological order
top_sorted_nodes.reverse();
Ok(top_sorted_nodes)
} else {
let mut cycles = Vec::new();
for scc in &sccs_with_cycles {
cycles.append(&mut simple_cycles_in_component(graph, scc));
}
let error = match report {
ReportCycles::Hierarchy => ScheduleBuildError::HierarchyCycle(
self.get_hierarchy_cycles_error_message(&cycles),
),
ReportCycles::Dependency => ScheduleBuildError::DependencyCycle(
self.get_dependency_cycles_error_message(&cycles),
),
};
Err(error)
}
}
/// Logs details of cycles in the hierarchy graph.
fn get_hierarchy_cycles_error_message(&self, cycles: &[Vec<NodeId>]) -> String {
let mut message = format!("schedule has {} in_set cycle(s):\n", cycles.len());
for (i, cycle) in cycles.iter().enumerate() {
let mut names = cycle.iter().map(|id| self.get_node_name(id));
let first_name = names.next().unwrap();
writeln!(
message,
"cycle {}: set `{first_name}` contains itself",
i + 1,
)
.unwrap();
writeln!(message, "set `{first_name}`").unwrap();
for name in names.chain(std::iter::once(first_name)) {
writeln!(message, " ... which contains set `{name}`").unwrap();
}
writeln!(message).unwrap();
}
message
}
/// Logs details of cycles in the dependency graph.
fn get_dependency_cycles_error_message(&self, cycles: &[Vec<NodeId>]) -> String {
let mut message = format!("schedule has {} before/after cycle(s):\n", cycles.len());
for (i, cycle) in cycles.iter().enumerate() {
let mut names = cycle
.iter()
.map(|id| (self.get_node_kind(id), self.get_node_name(id)));
let (first_kind, first_name) = names.next().unwrap();
writeln!(
message,
"cycle {}: {first_kind} `{first_name}` must run before itself",
i + 1,
)
.unwrap();
writeln!(message, "{first_kind} `{first_name}`").unwrap();
for (kind, name) in names.chain(std::iter::once((first_kind, first_name))) {
writeln!(message, " ... which must run before {kind} `{name}`").unwrap();
}
writeln!(message).unwrap();
}
message
}
fn check_for_cross_dependencies(
&self,
dep_results: &CheckGraphResults<NodeId>,
hier_results_connected: &HashSet<(NodeId, NodeId)>,
) -> Result<(), ScheduleBuildError> {
for &(a, b) in &dep_results.connected {
if hier_results_connected.contains(&(a, b)) || hier_results_connected.contains(&(b, a))
{
let name_a = self.get_node_name(&a);
let name_b = self.get_node_name(&b);
return Err(ScheduleBuildError::CrossDependency(name_a, name_b));
}
}
Ok(())
}
fn check_order_but_intersect(
&self,
dep_results_connected: &HashSet<(NodeId, NodeId)>,
set_system_bitsets: &HashMap<NodeId, FixedBitSet>,
) -> Result<(), ScheduleBuildError> {
// check that there is no ordering between system sets that intersect
for (a, b) in dep_results_connected {
if !(a.is_set() && b.is_set()) {
continue;
}
let a_systems = set_system_bitsets.get(a).unwrap();
let b_systems = set_system_bitsets.get(b).unwrap();
if !a_systems.is_disjoint(b_systems) {
return Err(ScheduleBuildError::SetsHaveOrderButIntersect(
self.get_node_name(a),
self.get_node_name(b),
));
}
}
Ok(())
}
fn check_system_type_set_ambiguity(
&self,
set_systems: &HashMap<NodeId, Vec<NodeId>>,
) -> Result<(), ScheduleBuildError> {
for (&id, systems) in set_systems {
let set = &self.system_sets[id.index()];
if set.is_system_type() {
let instances = systems.len();
let ambiguous_with = self.ambiguous_with.edges(id);
let before = self.dependency.graph.edges_directed(id, Incoming);
let after = self.dependency.graph.edges_directed(id, Outgoing);
let relations = before.count() + after.count() + ambiguous_with.count();
if instances > 1 && relations > 0 {
return Err(ScheduleBuildError::SystemTypeSetAmbiguity(
self.get_node_name(&id),
));
}
}
}
Ok(())
}
/// if [`ScheduleBuildSettings::ambiguity_detection`] is [`LogLevel::Ignore`], this check is skipped
fn optionally_check_conflicts(
&self,
conflicts: &[(NodeId, NodeId, Vec<ComponentId>)],
components: &Components,
schedule_label: InternedScheduleLabel,
) -> Result<(), ScheduleBuildError> {
if self.settings.ambiguity_detection == LogLevel::Ignore || conflicts.is_empty() {
return Ok(());
}
let message = self.get_conflicts_error_message(conflicts, components);
match self.settings.ambiguity_detection {
LogLevel::Ignore => Ok(()),
LogLevel::Warn => {
warn!("Schedule {schedule_label:?} has ambiguities.\n{}", message);
Ok(())
}
LogLevel::Error => Err(ScheduleBuildError::Ambiguity(message)),
}
}
fn get_conflicts_error_message(
&self,
ambiguities: &[(NodeId, NodeId, Vec<ComponentId>)],
components: &Components,
) -> String {
let n_ambiguities = ambiguities.len();
let mut message = format!(
"{n_ambiguities} pairs of systems with conflicting data access have indeterminate execution order. \
Consider adding `before`, `after`, or `ambiguous_with` relationships between these:\n",
);
for (name_a, name_b, conflicts) in self.conflicts_to_string(ambiguities, components) {
writeln!(message, " -- {name_a} and {name_b}").unwrap();
if !conflicts.is_empty() {
writeln!(message, " conflict on: {conflicts:?}").unwrap();
} else {
// one or both systems must be exclusive
let world = std::any::type_name::<World>();
writeln!(message, " conflict on: {world}").unwrap();
}
}
message
}
/// convert conflicts to human readable format
pub fn conflicts_to_string<'a>(
&'a self,
ambiguities: &'a [(NodeId, NodeId, Vec<ComponentId>)],
components: &'a Components,
) -> impl Iterator<Item = (String, String, Vec<&str>)> + 'a {
ambiguities
.iter()
.map(move |(system_a, system_b, conflicts)| {
let name_a = self.get_node_name(system_a);
let name_b = self.get_node_name(system_b);
debug_assert!(system_a.is_system(), "{name_a} is not a system.");
debug_assert!(system_b.is_system(), "{name_b} is not a system.");
let conflict_names: Vec<_> = conflicts
.iter()
.map(|id| components.get_name(*id).unwrap())
.collect();
(name_a, name_b, conflict_names)
})
}
fn traverse_sets_containing_node(&self, id: NodeId, f: &mut impl FnMut(NodeId) -> bool) {
for (set_id, _, _) in self.hierarchy.graph.edges_directed(id, Incoming) {
if f(set_id) {
self.traverse_sets_containing_node(set_id, f);
}
}
}
fn names_of_sets_containing_node(&self, id: &NodeId) -> Vec<String> {
let mut sets = HashSet::new();
self.traverse_sets_containing_node(*id, &mut |set_id| {
!self.system_sets[set_id.index()].is_system_type() && sets.insert(set_id)
});
let mut sets: Vec<_> = sets
.into_iter()
.map(|set_id| self.get_node_name(&set_id))
.collect();
sets.sort();
sets
}
}
/// Category of errors encountered during schedule construction.
#[derive(Error, Debug)]
#[non_exhaustive]
pub enum ScheduleBuildError {
/// A system set contains itself.
#[error("System set `{0}` contains itself.")]
HierarchyLoop(String),
/// The hierarchy of system sets contains a cycle.
#[error("System set hierarchy contains cycle(s).\n{0}")]
HierarchyCycle(String),
/// The hierarchy of system sets contains redundant edges.
///
/// This error is disabled by default, but can be opted-in using [`ScheduleBuildSettings`].
#[error("System set hierarchy contains redundant edges.\n{0}")]
HierarchyRedundancy(String),
/// A system (set) has been told to run before itself.
#[error("System set `{0}` depends on itself.")]
DependencyLoop(String),
/// The dependency graph contains a cycle.
#[error("System dependencies contain cycle(s).\n{0}")]
DependencyCycle(String),
/// Tried to order a system (set) relative to a system set it belongs to.
#[error("`{0}` and `{1}` have both `in_set` and `before`-`after` relationships (these might be transitive). This combination is unsolvable as a system cannot run before or after a set it belongs to.")]
CrossDependency(String, String),
/// Tried to order system sets that share systems.
#[error("`{0}` and `{1}` have a `before`-`after` relationship (which may be transitive) but share systems.")]
SetsHaveOrderButIntersect(String, String),
/// Tried to order a system (set) relative to all instances of some system function.
#[error("Tried to order against `{0}` in a schedule that has more than one `{0}` instance. `{0}` is a `SystemTypeSet` and cannot be used for ordering if ambiguous. Use a different set without this restriction.")]
SystemTypeSetAmbiguity(String),
/// Systems with conflicting access have indeterminate run order.
///
/// This error is disabled by default, but can be opted-in using [`ScheduleBuildSettings`].
#[error("Systems with conflicting access have indeterminate run order.\n{0}")]
Ambiguity(String),
/// Tried to run a schedule before all of its systems have been initialized.
#[error("Systems in schedule have not been initialized.")]
Uninitialized,
}
/// Specifies how schedule construction should respond to detecting a certain kind of issue.
#[derive(Debug, Clone, PartialEq)]
pub enum LogLevel {
/// Occurrences are completely ignored.
Ignore,
/// Occurrences are logged only.
Warn,
/// Occurrences are logged and result in errors.
Error,
}
/// Specifies miscellaneous settings for schedule construction.
#[derive(Clone, Debug)]
pub struct ScheduleBuildSettings {
/// Determines whether the presence of ambiguities (systems with conflicting access but indeterminate order)
/// is only logged or also results in an [`Ambiguity`](ScheduleBuildError::Ambiguity) error.
///
/// Defaults to [`LogLevel::Ignore`].
pub ambiguity_detection: LogLevel,
/// Determines whether the presence of redundant edges in the hierarchy of system sets is only
/// logged or also results in a [`HierarchyRedundancy`](ScheduleBuildError::HierarchyRedundancy)
/// error.
///
/// Defaults to [`LogLevel::Warn`].
pub hierarchy_detection: LogLevel,
/// Auto insert [`apply_deferred`] systems into the schedule,
/// when there are [`Deferred`](crate::prelude::Deferred)
/// in one system and there are ordering dependencies on that system. [`Commands`](crate::system::Commands) is one
/// such deferred buffer.
///
/// You may want to disable this if you only want to sync deferred params at the end of the schedule,
/// or want to manually insert all your sync points.
///
/// Defaults to `true`
pub auto_insert_apply_deferred: bool,
/// If set to true, node names will be shortened instead of the fully qualified type path.
///
/// Defaults to `true`.
pub use_shortnames: bool,
/// If set to true, report all system sets the conflicting systems are part of.
///
/// Defaults to `true`.
pub report_sets: bool,
}
impl Default for ScheduleBuildSettings {
fn default() -> Self {
Self::new()
}
}
impl ScheduleBuildSettings {
/// Default build settings.
/// See the field-level documentation for the default value of each field.
pub const fn new() -> Self {
Self {
ambiguity_detection: LogLevel::Ignore,
hierarchy_detection: LogLevel::Warn,
auto_insert_apply_deferred: true,
use_shortnames: true,
report_sets: true,
}
}
}
#[cfg(test)]
mod tests {
use crate::{
self as bevy_ecs,
prelude::{Res, Resource},
schedule::{
IntoSystemConfigs, IntoSystemSetConfigs, Schedule, ScheduleBuildSettings, SystemSet,
},
system::Commands,
world::World,
};
#[derive(Resource)]
struct Resource1;
#[derive(Resource)]
struct Resource2;
// regression test for https://github.com/bevyengine/bevy/issues/9114
#[test]
fn ambiguous_with_not_breaking_run_conditions() {
#[derive(SystemSet, Debug, Clone, PartialEq, Eq, Hash)]
struct Set;
let mut world = World::new();
let mut schedule = Schedule::default();
schedule.configure_sets(Set.run_if(|| false));
schedule.add_systems(
(|| panic!("This system must not run"))
.ambiguous_with(|| ())
.in_set(Set),
);
schedule.run(&mut world);
}
#[test]
fn inserts_a_sync_point() {
let mut schedule = Schedule::default();
let mut world = World::default();
schedule.add_systems(
(
|mut commands: Commands| commands.insert_resource(Resource1),
|_: Res<Resource1>| {},
)
.chain(),
);
schedule.run(&mut world);
// inserted a sync point
assert_eq!(schedule.executable.systems.len(), 3);
}
#[test]
fn merges_sync_points_into_one() {
let mut schedule = Schedule::default();
let mut world = World::default();
// insert two parallel command systems, it should only create one sync point
schedule.add_systems(
(
(
|mut commands: Commands| commands.insert_resource(Resource1),
|mut commands: Commands| commands.insert_resource(Resource2),
),
|_: Res<Resource1>, _: Res<Resource2>| {},
)
.chain(),
);
schedule.run(&mut world);
// inserted sync points
assert_eq!(schedule.executable.systems.len(), 4);
// merges sync points on rebuild
schedule.add_systems(((
(
|mut commands: Commands| commands.insert_resource(Resource1),
|mut commands: Commands| commands.insert_resource(Resource2),
),
|_: Res<Resource1>, _: Res<Resource2>| {},
)
.chain(),));
schedule.run(&mut world);
assert_eq!(schedule.executable.systems.len(), 7);
}
#[test]
fn adds_multiple_consecutive_syncs() {
let mut schedule = Schedule::default();
let mut world = World::default();
// insert two consecutive command systems, it should create two sync points
schedule.add_systems(
(
|mut commands: Commands| commands.insert_resource(Resource1),
|mut commands: Commands| commands.insert_resource(Resource2),
|_: Res<Resource1>, _: Res<Resource2>| {},
)
.chain(),
);
schedule.run(&mut world);
assert_eq!(schedule.executable.systems.len(), 5);
}
#[test]
fn disable_auto_sync_points() {
let mut schedule = Schedule::default();
schedule.set_build_settings(ScheduleBuildSettings {
auto_insert_apply_deferred: false,
..Default::default()
});
let mut world = World::default();
schedule.add_systems(
(
|mut commands: Commands| commands.insert_resource(Resource1),
|res: Option<Res<Resource1>>| assert!(res.is_none()),
)
.chain(),
);
schedule.run(&mut world);
assert_eq!(schedule.executable.systems.len(), 2);
}
mod no_sync_edges {
use super::*;
fn insert_resource(mut commands: Commands) {
commands.insert_resource(Resource1);
}
fn resource_does_not_exist(res: Option<Res<Resource1>>) {
assert!(res.is_none());
}
#[derive(SystemSet, Hash, PartialEq, Eq, Debug, Clone)]
enum Sets {
A,
B,
}
fn check_no_sync_edges(add_systems: impl FnOnce(&mut Schedule)) {
let mut schedule = Schedule::default();
let mut world = World::default();
add_systems(&mut schedule);
schedule.run(&mut world);
assert_eq!(schedule.executable.systems.len(), 2);
}
#[test]
fn system_to_system_after() {
check_no_sync_edges(|schedule| {
schedule.add_systems((
insert_resource,
resource_does_not_exist.after_ignore_deferred(insert_resource),
));
});
}
#[test]
fn system_to_system_before() {
check_no_sync_edges(|schedule| {
schedule.add_systems((
insert_resource.before_ignore_deferred(resource_does_not_exist),
resource_does_not_exist,
));
});
}
#[test]
fn set_to_system_after() {
check_no_sync_edges(|schedule| {
schedule
.add_systems((insert_resource, resource_does_not_exist.in_set(Sets::A)))
.configure_sets(Sets::A.after_ignore_deferred(insert_resource));
});
}
#[test]
fn set_to_system_before() {
check_no_sync_edges(|schedule| {
schedule
.add_systems((insert_resource.in_set(Sets::A), resource_does_not_exist))
.configure_sets(Sets::A.before_ignore_deferred(resource_does_not_exist));
});
}
#[test]
fn set_to_set_after() {
check_no_sync_edges(|schedule| {
schedule
.add_systems((
insert_resource.in_set(Sets::A),
resource_does_not_exist.in_set(Sets::B),
))
.configure_sets(Sets::B.after_ignore_deferred(Sets::A));
});
}
#[test]
fn set_to_set_before() {
check_no_sync_edges(|schedule| {
schedule
.add_systems((
insert_resource.in_set(Sets::A),
resource_does_not_exist.in_set(Sets::B),
))
.configure_sets(Sets::A.before_ignore_deferred(Sets::B));
});
}
}
mod no_sync_chain {
use super::*;
#[derive(Resource)]
struct Ra;
#[derive(Resource)]
struct Rb;
#[derive(Resource)]
struct Rc;
fn run_schedule(expected_num_systems: usize, add_systems: impl FnOnce(&mut Schedule)) {
let mut schedule = Schedule::default();
let mut world = World::default();
add_systems(&mut schedule);
schedule.run(&mut world);
assert_eq!(schedule.executable.systems.len(), expected_num_systems);
}
#[test]
fn only_chain_outside() {
run_schedule(5, |schedule: &mut Schedule| {
schedule.add_systems(
(
(
|mut commands: Commands| commands.insert_resource(Ra),
|mut commands: Commands| commands.insert_resource(Rb),
),
(
|res_a: Option<Res<Ra>>, res_b: Option<Res<Rb>>| {
assert!(res_a.is_some());
assert!(res_b.is_some());
},
|res_a: Option<Res<Ra>>, res_b: Option<Res<Rb>>| {
assert!(res_a.is_some());
assert!(res_b.is_some());
},
),
)
.chain(),
);
});
run_schedule(4, |schedule: &mut Schedule| {
schedule.add_systems(
(
(
|mut commands: Commands| commands.insert_resource(Ra),
|mut commands: Commands| commands.insert_resource(Rb),
),
(
|res_a: Option<Res<Ra>>, res_b: Option<Res<Rb>>| {
assert!(res_a.is_none());
assert!(res_b.is_none());
},
|res_a: Option<Res<Ra>>, res_b: Option<Res<Rb>>| {
assert!(res_a.is_none());
assert!(res_b.is_none());
},
),
)
.chain_ignore_deferred(),
);
});
}
#[test]
fn chain_first() {
run_schedule(6, |schedule: &mut Schedule| {
schedule.add_systems(
(
(
|mut commands: Commands| commands.insert_resource(Ra),
|mut commands: Commands, res_a: Option<Res<Ra>>| {
commands.insert_resource(Rb);
assert!(res_a.is_some());
},
)
.chain(),
(
|res_a: Option<Res<Ra>>, res_b: Option<Res<Rb>>| {
assert!(res_a.is_some());
assert!(res_b.is_some());
},
|res_a: Option<Res<Ra>>, res_b: Option<Res<Rb>>| {
assert!(res_a.is_some());
assert!(res_b.is_some());
},
),
)
.chain(),
);
});
run_schedule(5, |schedule: &mut Schedule| {
schedule.add_systems(
(
(
|mut commands: Commands| commands.insert_resource(Ra),
|mut commands: Commands, res_a: Option<Res<Ra>>| {
commands.insert_resource(Rb);
assert!(res_a.is_some());
},
)
.chain(),
(
|res_a: Option<Res<Ra>>, res_b: Option<Res<Rb>>| {
assert!(res_a.is_some());
assert!(res_b.is_none());
},
|res_a: Option<Res<Ra>>, res_b: Option<Res<Rb>>| {
assert!(res_a.is_some());
assert!(res_b.is_none());
},
),
)
.chain_ignore_deferred(),
);
});
}
#[test]
fn chain_second() {
run_schedule(6, |schedule: &mut Schedule| {
schedule.add_systems(
(
(
|mut commands: Commands| commands.insert_resource(Ra),
|mut commands: Commands| commands.insert_resource(Rb),
),
(
|mut commands: Commands,
res_a: Option<Res<Ra>>,
res_b: Option<Res<Rb>>| {
commands.insert_resource(Rc);
assert!(res_a.is_some());
assert!(res_b.is_some());
},
|res_a: Option<Res<Ra>>,
res_b: Option<Res<Rb>>,
res_c: Option<Res<Rc>>| {
assert!(res_a.is_some());
assert!(res_b.is_some());
assert!(res_c.is_some());
},
)
.chain(),
)
.chain(),
);
});
run_schedule(5, |schedule: &mut Schedule| {
schedule.add_systems(
(
(
|mut commands: Commands| commands.insert_resource(Ra),
|mut commands: Commands| commands.insert_resource(Rb),
),
(
|mut commands: Commands,
res_a: Option<Res<Ra>>,
res_b: Option<Res<Rb>>| {
commands.insert_resource(Rc);
assert!(res_a.is_none());
assert!(res_b.is_none());
},
|res_a: Option<Res<Ra>>,
res_b: Option<Res<Rb>>,
res_c: Option<Res<Rc>>| {
assert!(res_a.is_some());
assert!(res_b.is_some());
assert!(res_c.is_some());
},
)
.chain(),
)
.chain_ignore_deferred(),
);
});
}
#[test]
fn chain_all() {
run_schedule(7, |schedule: &mut Schedule| {
schedule.add_systems(
(
(
|mut commands: Commands| commands.insert_resource(Ra),
|mut commands: Commands, res_a: Option<Res<Ra>>| {
commands.insert_resource(Rb);
assert!(res_a.is_some());
},
)
.chain(),
(
|mut commands: Commands,
res_a: Option<Res<Ra>>,
res_b: Option<Res<Rb>>| {
commands.insert_resource(Rc);
assert!(res_a.is_some());
assert!(res_b.is_some());
},
|res_a: Option<Res<Ra>>,
res_b: Option<Res<Rb>>,
res_c: Option<Res<Rc>>| {
assert!(res_a.is_some());
assert!(res_b.is_some());
assert!(res_c.is_some());
},
)
.chain(),
)
.chain(),
);
});
run_schedule(6, |schedule: &mut Schedule| {
schedule.add_systems(
(
(
|mut commands: Commands| commands.insert_resource(Ra),
|mut commands: Commands, res_a: Option<Res<Ra>>| {
commands.insert_resource(Rb);
assert!(res_a.is_some());
},
)
.chain(),
(
|mut commands: Commands,
res_a: Option<Res<Ra>>,
res_b: Option<Res<Rb>>| {
commands.insert_resource(Rc);
assert!(res_a.is_some());
assert!(res_b.is_none());
},
|res_a: Option<Res<Ra>>,
res_b: Option<Res<Rb>>,
res_c: Option<Res<Rc>>| {
assert!(res_a.is_some());
assert!(res_b.is_some());
assert!(res_c.is_some());
},
)
.chain(),
)
.chain_ignore_deferred(),
);
});
}
}
}