bevy/examples/stress_tests/many_lights.rs
Mark Schmale 1ba7429371 Doc/module style doc blocks for examples (#4438)
# Objective

Provide a starting point for #3951, or a partial solution. 
Providing a few comment blocks to discuss, and hopefully find better one in the process. 

## Solution

Since I am pretty new to pretty much anything in this context, I figured I'd just start with a draft for some file level doc blocks. For some of them I found more relevant details (or at least things I considered interessting), for some others there is less. 

## Changelog

- Moved some existing comments from main() functions in the 2d examples to the file header level
- Wrote some more comment blocks for most other 2d examples

TODO: 
- [x] 2d/sprite_sheet, wasnt able to come up with something good yet 
- [x] all other example groups...


Also: Please let me know if the commit style is okay, or to verbose. I could certainly squash these things, or add more details if needed. 
I also hope its okay to raise this PR this early, with just a few files changed. Took me long enough and I dont wanted to let it go to waste because I lost motivation to do the whole thing. Additionally I am somewhat uncertain over the style and contents of the commets. So let me know what you thing please.
2022-05-16 13:53:20 +00:00

188 lines
6.4 KiB
Rust

//! Simple benchmark to test rendering many point lights.
//! Run with `WGPU_SETTINGS_PRIO=webgl2` to restrict to uniform buffers and max 256 lights.
use bevy::{
diagnostic::{FrameTimeDiagnosticsPlugin, LogDiagnosticsPlugin},
math::{DVec2, DVec3},
pbr::{ExtractedPointLight, GlobalLightMeta},
prelude::*,
render::{camera::CameraProjection, primitives::Frustum, RenderApp, RenderStage},
};
use rand::{thread_rng, Rng};
fn main() {
App::new()
.insert_resource(WindowDescriptor {
width: 1024.0,
height: 768.0,
title: "many_lights".to_string(),
present_mode: bevy::window::PresentMode::Immediate,
..default()
})
.add_plugins(DefaultPlugins)
.add_plugin(FrameTimeDiagnosticsPlugin::default())
.add_plugin(LogDiagnosticsPlugin::default())
.add_startup_system(setup)
.add_system(move_camera)
.add_system(print_light_count)
.add_plugin(LogVisibleLights)
.run();
}
fn setup(
mut commands: Commands,
mut meshes: ResMut<Assets<Mesh>>,
mut materials: ResMut<Assets<StandardMaterial>>,
) {
const LIGHT_RADIUS: f32 = 0.3;
const LIGHT_INTENSITY: f32 = 5.0;
const RADIUS: f32 = 50.0;
const N_LIGHTS: usize = 100_000;
commands.spawn_bundle(PbrBundle {
mesh: meshes.add(Mesh::from(shape::Icosphere {
radius: RADIUS,
subdivisions: 9,
})),
material: materials.add(StandardMaterial::from(Color::WHITE)),
transform: Transform::from_scale(Vec3::splat(-1.0)),
..default()
});
let mesh = meshes.add(Mesh::from(shape::Cube { size: 1.0 }));
let material = materials.add(StandardMaterial {
base_color: Color::PINK,
..default()
});
// NOTE: This pattern is good for testing performance of culling as it provides roughly
// the same number of visible meshes regardless of the viewing angle.
// NOTE: f64 is used to avoid precision issues that produce visual artifacts in the distribution
let golden_ratio = 0.5f64 * (1.0f64 + 5.0f64.sqrt());
let mut rng = thread_rng();
for i in 0..N_LIGHTS {
let spherical_polar_theta_phi = fibonacci_spiral_on_sphere(golden_ratio, i, N_LIGHTS);
let unit_sphere_p = spherical_polar_to_cartesian(spherical_polar_theta_phi);
commands.spawn_bundle(PointLightBundle {
point_light: PointLight {
range: LIGHT_RADIUS,
intensity: LIGHT_INTENSITY,
color: Color::hsl(rng.gen_range(0.0..360.0), 1.0, 0.5),
..default()
},
transform: Transform::from_translation((RADIUS as f64 * unit_sphere_p).as_vec3()),
..default()
});
}
// camera
match std::env::args().nth(1).as_deref() {
Some("orthographic") => {
let mut orthographic_camera_bundle = OrthographicCameraBundle::new_3d();
orthographic_camera_bundle.orthographic_projection.scale = 20.0;
let view_projection = orthographic_camera_bundle
.orthographic_projection
.get_projection_matrix();
orthographic_camera_bundle.frustum = Frustum::from_view_projection(
&view_projection,
&Vec3::ZERO,
&Vec3::Z,
orthographic_camera_bundle.orthographic_projection.far(),
);
commands.spawn_bundle(orthographic_camera_bundle)
}
_ => commands.spawn_bundle(PerspectiveCameraBundle::default()),
};
// add one cube, the only one with strong handles
// also serves as a reference point during rotation
commands.spawn_bundle(PbrBundle {
mesh,
material,
transform: Transform {
translation: Vec3::new(0.0, RADIUS as f32, 0.0),
scale: Vec3::splat(5.0),
..default()
},
..default()
});
}
// NOTE: This epsilon value is apparently optimal for optimizing for the average
// nearest-neighbor distance. See:
// http://extremelearning.com.au/how-to-evenly-distribute-points-on-a-sphere-more-effectively-than-the-canonical-fibonacci-lattice/
// for details.
const EPSILON: f64 = 0.36;
fn fibonacci_spiral_on_sphere(golden_ratio: f64, i: usize, n: usize) -> DVec2 {
DVec2::new(
2.0 * std::f64::consts::PI * (i as f64 / golden_ratio),
(1.0 - 2.0 * (i as f64 + EPSILON) / (n as f64 - 1.0 + 2.0 * EPSILON)).acos(),
)
}
fn spherical_polar_to_cartesian(p: DVec2) -> DVec3 {
let (sin_theta, cos_theta) = p.x.sin_cos();
let (sin_phi, cos_phi) = p.y.sin_cos();
DVec3::new(cos_theta * sin_phi, sin_theta * sin_phi, cos_phi)
}
// System for rotating the camera
fn move_camera(time: Res<Time>, mut camera_query: Query<&mut Transform, With<Camera>>) {
let mut camera_transform = camera_query.single_mut();
camera_transform.rotate(Quat::from_rotation_z(time.delta_seconds() * 0.15));
camera_transform.rotate(Quat::from_rotation_x(time.delta_seconds() * 0.15));
}
// System for printing the number of meshes on every tick of the timer
fn print_light_count(time: Res<Time>, mut timer: Local<PrintingTimer>, lights: Query<&PointLight>) {
timer.0.tick(time.delta());
if timer.0.just_finished() {
info!("Lights: {}", lights.iter().len(),);
}
}
struct LogVisibleLights;
impl Plugin for LogVisibleLights {
fn build(&self, app: &mut App) {
let render_app = match app.get_sub_app_mut(RenderApp) {
Ok(render_app) => render_app,
Err(_) => return,
};
render_app
.add_system_to_stage(RenderStage::Extract, extract_time)
.add_system_to_stage(RenderStage::Prepare, print_visible_light_count);
}
}
// System for printing the number of meshes on every tick of the timer
fn print_visible_light_count(
time: Res<Time>,
mut timer: Local<PrintingTimer>,
visible: Query<&ExtractedPointLight>,
global_light_meta: Res<GlobalLightMeta>,
) {
timer.0.tick(time.delta());
if timer.0.just_finished() {
info!(
"Visible Lights: {}, Rendered Lights: {}",
visible.iter().len(),
global_light_meta.entity_to_index.len()
);
}
}
fn extract_time(mut commands: Commands, time: Res<Time>) {
commands.insert_resource(time.into_inner().clone());
}
struct PrintingTimer(Timer);
impl Default for PrintingTimer {
fn default() -> Self {
Self(Timer::from_seconds(1.0, true))
}
}