bevy/assets/shaders/animate_shader.wgsl
Charles 8073362039 add globals to mesh view bind group (#5409)
# Objective

- It's often really useful to have access to the time when writing shaders.

## Solution

- Add a UnifformBuffer in the mesh view bind group
- This buffer contains the time, delta time and a wrapping frame count

https://user-images.githubusercontent.com/8348954/180130314-97948c2a-2d11-423d-a9c4-fb5c9d1892c7.mp4

---

## Changelog

- Added a `GlobalsUniform` at position 9 of the mesh view bind group

## Notes

The implementation is currently split between bevy_render and bevy_pbr because I was basing my implementation on the `ViewPlugin`. I'm not sure if that's the right way to structure it.

I named this `globals` instead of just time because we could potentially add more things to it.

## References in other engines

- Godot: <https://docs.godotengine.org/en/stable/tutorials/shaders/shader_reference/canvas_item_shader.html#global-built-ins>
    - Global time since startup, in seconds, by default resets to 0 after 3600 seconds
    - Doesn't seem to have anything else
- Unreal: <https://docs.unrealengine.com/4.26/en-US/RenderingAndGraphics/Materials/ExpressionReference/Constant/>
    - Generic time value that updates every frame. Can be paused or scaled.
    - Frame count node, doesn't seem to be an equivalent for shaders: <https://docs.unrealengine.com/4.26/en-US/BlueprintAPI/Utilities/GetFrameCount/>
- Unity: <https://docs.unity3d.com/Manual/SL-UnityShaderVariables.html>
    - time since startup in seconds. No mention of time wrapping. Stored as a `vec4(t/20, t, t*2, t*3)` where `t` is the value in seconds
    - Also has delta time, sin time and cos time
- ShaderToy: <https://www.shadertoy.com/howto>
    - iTime is the time since startup in seconds.
    - iFrameRate
    - iTimeDelta
    - iFrame frame counter

Co-authored-by: Charles <IceSentry@users.noreply.github.com>
2022-09-28 04:20:27 +00:00

47 lines
1.6 KiB
WebGPU Shading Language

#import bevy_pbr::mesh_types
// The time since startup data is in the globals binding which is part of the mesh_view_bindings import
#import bevy_pbr::mesh_view_bindings
fn oklab_to_linear_srgb(c: vec3<f32>) -> vec3<f32> {
let L = c.x;
let a = c.y;
let b = c.z;
let l_ = L + 0.3963377774 * a + 0.2158037573 * b;
let m_ = L - 0.1055613458 * a - 0.0638541728 * b;
let s_ = L - 0.0894841775 * a - 1.2914855480 * b;
let l = l_ * l_ * l_;
let m = m_ * m_ * m_;
let s = s_ * s_ * s_;
return vec3<f32>(
4.0767416621 * l - 3.3077115913 * m + 0.2309699292 * s,
-1.2684380046 * l + 2.6097574011 * m - 0.3413193965 * s,
-0.0041960863 * l - 0.7034186147 * m + 1.7076147010 * s,
);
}
struct FragmentInput {
#import bevy_pbr::mesh_vertex_output
}
@fragment
fn fragment(in: FragmentInput) -> @location(0) vec4<f32> {
let speed = 2.0;
// The globals binding contains various global values like time
// which is the time since startup in seconds
let t_1 = sin(globals.time * speed) * 0.5 + 0.5;
let t_2 = cos(globals.time * speed);
let distance_to_center = distance(in.uv, vec2<f32>(0.5)) * 1.4;
// blending is done in a perceptual color space: https://bottosson.github.io/posts/oklab/
let red = vec3<f32>(0.627955, 0.224863, 0.125846);
let green = vec3<f32>(0.86644, -0.233887, 0.179498);
let blue = vec3<f32>(0.701674, 0.274566, -0.169156);
let white = vec3<f32>(1.0, 0.0, 0.0);
let mixed = mix(mix(red, blue, t_1), mix(green, white, t_2), distance_to_center);
return vec4<f32>(oklab_to_linear_srgb(mixed), 1.0);
}