bevy/crates/bevy_math/src/float_ord.rs
Zachary Harrold a8b9c945c7
Add no_std Support to bevy_math (#15810)
# Objective

- Contributes to #15460

## Solution

- Added two new features, `std` (default) and `alloc`, gating `std` and
`alloc` behind them respectively.
- Added missing `f32` functions to `std_ops` as required. These `f32`
methods have been added to the `clippy.toml` deny list to aid in
`no_std` development.

## Testing

- CI
- `cargo clippy -p bevy_math --no-default-features --features libm
--target "x86_64-unknown-none"`
- `cargo test -p bevy_math --no-default-features --features libm`
- `cargo test -p bevy_math --no-default-features --features "libm,
alloc"`
- `cargo test -p bevy_math --no-default-features --features "libm,
alloc, std"`
- `cargo test -p bevy_math --no-default-features --features "std"`

## Notes

The following items require the `alloc` feature to be enabled:

- `CubicBSpline`
- `CubicBezier`
- `CubicCardinalSpline`
- `CubicCurve`
- `CubicGenerator`
- `CubicHermite`
- `CubicNurbs`
- `CyclicCubicGenerator`
- `RationalCurve`
- `RationalGenerator`
- `BoxedPolygon`
- `BoxedPolyline2d`
- `BoxedPolyline3d`
- `SampleCurve`
- `SampleAutoCurve`
- `UnevenSampleCurve`
- `UnevenSampleAutoCurve`
- `EvenCore`
- `UnevenCore`
- `ChunkedUnevenCore`

This requirement could be relaxed in certain cases, but I had erred on
the side of gating rather than modifying. Since `no_std` is a new set of
platforms we are adding support to, and the `alloc` feature is enabled
by default, this is not a breaking change.

---------

Co-authored-by: Benjamin Brienen <benjamin.brienen@outlook.com>
Co-authored-by: Matty <2975848+mweatherley@users.noreply.github.com>
Co-authored-by: Joona Aalto <jondolf.dev@gmail.com>
2024-12-03 17:14:51 +00:00

177 lines
4.7 KiB
Rust

use core::{
cmp::Ordering,
hash::{Hash, Hasher},
ops::Neg,
};
#[cfg(feature = "bevy_reflect")]
use bevy_reflect::Reflect;
/// A wrapper for floats that implements [`Ord`], [`Eq`], and [`Hash`] traits.
///
/// This is a work around for the fact that the IEEE 754-2008 standard,
/// implemented by Rust's [`f32`] type,
/// doesn't define an ordering for [`NaN`](f32::NAN),
/// and `NaN` is not considered equal to any other `NaN`.
///
/// Wrapping a float with `FloatOrd` breaks conformance with the standard
/// by sorting `NaN` as less than all other numbers and equal to any other `NaN`.
#[derive(Debug, Copy, Clone)]
#[cfg_attr(
feature = "bevy_reflect",
derive(Reflect),
reflect(Debug, PartialEq, Hash)
)]
pub struct FloatOrd(pub f32);
impl PartialOrd for FloatOrd {
fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
Some(self.cmp(other))
}
fn lt(&self, other: &Self) -> bool {
!other.le(self)
}
// If `self` is NaN, it is equal to another NaN and less than all other floats, so return true.
// If `self` isn't NaN and `other` is, the float comparison returns false, which match the `FloatOrd` ordering.
// Otherwise, a standard float comparison happens.
fn le(&self, other: &Self) -> bool {
self.0.is_nan() || self.0 <= other.0
}
fn gt(&self, other: &Self) -> bool {
!self.le(other)
}
fn ge(&self, other: &Self) -> bool {
other.le(self)
}
}
impl Ord for FloatOrd {
#[allow(clippy::comparison_chain)]
fn cmp(&self, other: &Self) -> Ordering {
if self > other {
Ordering::Greater
} else if self < other {
Ordering::Less
} else {
Ordering::Equal
}
}
}
impl PartialEq for FloatOrd {
fn eq(&self, other: &Self) -> bool {
if self.0.is_nan() {
other.0.is_nan()
} else {
self.0 == other.0
}
}
}
impl Eq for FloatOrd {}
impl Hash for FloatOrd {
fn hash<H: Hasher>(&self, state: &mut H) {
if self.0.is_nan() {
// Ensure all NaN representations hash to the same value
state.write(&f32::to_ne_bytes(f32::NAN));
} else if self.0 == 0.0 {
// Ensure both zeroes hash to the same value
state.write(&f32::to_ne_bytes(0.0f32));
} else {
state.write(&f32::to_ne_bytes(self.0));
}
}
}
impl Neg for FloatOrd {
type Output = FloatOrd;
fn neg(self) -> Self::Output {
FloatOrd(-self.0)
}
}
#[cfg(test)]
mod tests {
use super::*;
const NAN: FloatOrd = FloatOrd(f32::NAN);
const ZERO: FloatOrd = FloatOrd(0.0);
const ONE: FloatOrd = FloatOrd(1.0);
#[test]
fn float_ord_eq() {
assert_eq!(NAN, NAN);
assert_ne!(NAN, ZERO);
assert_ne!(ZERO, NAN);
assert_eq!(ZERO, ZERO);
}
#[test]
fn float_ord_cmp() {
assert_eq!(NAN.cmp(&NAN), Ordering::Equal);
assert_eq!(NAN.cmp(&ZERO), Ordering::Less);
assert_eq!(ZERO.cmp(&NAN), Ordering::Greater);
assert_eq!(ZERO.cmp(&ZERO), Ordering::Equal);
assert_eq!(ONE.cmp(&ZERO), Ordering::Greater);
assert_eq!(ZERO.cmp(&ONE), Ordering::Less);
}
#[test]
#[allow(clippy::nonminimal_bool)]
fn float_ord_cmp_operators() {
assert!(!(NAN < NAN));
assert!(NAN < ZERO);
assert!(!(ZERO < NAN));
assert!(!(ZERO < ZERO));
assert!(ZERO < ONE);
assert!(!(ONE < ZERO));
assert!(!(NAN > NAN));
assert!(!(NAN > ZERO));
assert!(ZERO > NAN);
assert!(!(ZERO > ZERO));
assert!(!(ZERO > ONE));
assert!(ONE > ZERO);
assert!(NAN <= NAN);
assert!(NAN <= ZERO);
assert!(!(ZERO <= NAN));
assert!(ZERO <= ZERO);
assert!(ZERO <= ONE);
assert!(!(ONE <= ZERO));
assert!(NAN >= NAN);
assert!(!(NAN >= ZERO));
assert!(ZERO >= NAN);
assert!(ZERO >= ZERO);
assert!(!(ZERO >= ONE));
assert!(ONE >= ZERO);
}
#[cfg(feature = "std")]
#[test]
fn float_ord_hash() {
let hash = |num| {
let mut h = std::hash::DefaultHasher::new();
FloatOrd(num).hash(&mut h);
h.finish()
};
assert_ne!((-0.0f32).to_bits(), 0.0f32.to_bits());
assert_eq!(hash(-0.0), hash(0.0));
let nan_1 = f32::from_bits(0b0111_1111_1000_0000_0000_0000_0000_0001);
assert!(nan_1.is_nan());
let nan_2 = f32::from_bits(0b0111_1111_1000_0000_0000_0000_0000_0010);
assert!(nan_2.is_nan());
assert_ne!(nan_1.to_bits(), nan_2.to_bits());
assert_eq!(hash(nan_1), hash(nan_2));
}
}