mirror of
https://github.com/bevyengine/bevy
synced 2024-11-26 06:30:19 +00:00
ddfafab971
# Objective Fix https://github.com/bevyengine/bevy/issues/4530 - Make it easier to open/close/modify windows by setting them up as `Entity`s with a `Window` component. - Make multiple windows very simple to set up. (just add a `Window` component to an entity and it should open) ## Solution - Move all properties of window descriptor to ~components~ a component. - Replace `WindowId` with `Entity`. - ~Use change detection for components to update backend rather than events/commands. (The `CursorMoved`/`WindowResized`/... events are kept for user convenience.~ Check each field individually to see what we need to update, events are still kept for user convenience. --- ## Changelog - `WindowDescriptor` renamed to `Window`. - Width/height consolidated into a `WindowResolution` component. - Requesting maximization/minimization is done on the [`Window::state`] field. - `WindowId` is now `Entity`. ## Migration Guide - Replace `WindowDescriptor` with `Window`. - Change `width` and `height` fields in a `WindowResolution`, either by doing ```rust WindowResolution::new(width, height) // Explicitly // or using From<_> for tuples for convenience (1920., 1080.).into() ``` - Replace any `WindowCommand` code to just modify the `Window`'s fields directly and creating/closing windows is now by spawning/despawning an entity with a `Window` component like so: ```rust let window = commands.spawn(Window { ... }).id(); // open window commands.entity(window).despawn(); // close window ``` ## Unresolved - ~How do we tell when a window is minimized by a user?~ ~Currently using the `Resize(0, 0)` as an indicator of minimization.~ No longer attempting to tell given how finnicky this was across platforms, now the user can only request that a window be maximized/minimized. ## Future work - Move `exit_on_close` functionality out from windowing and into app(?) - https://github.com/bevyengine/bevy/issues/5621 - https://github.com/bevyengine/bevy/issues/7099 - https://github.com/bevyengine/bevy/issues/7098 Co-authored-by: Carter Anderson <mcanders1@gmail.com>
113 lines
3.5 KiB
Rust
113 lines
3.5 KiB
Rust
//! Renders two cameras to the same window to accomplish "split screen".
|
|
|
|
use std::f32::consts::PI;
|
|
|
|
use bevy::{
|
|
core_pipeline::clear_color::ClearColorConfig, prelude::*, render::camera::Viewport,
|
|
window::WindowResized,
|
|
};
|
|
|
|
fn main() {
|
|
App::new()
|
|
.add_plugins(DefaultPlugins)
|
|
.add_startup_system(setup)
|
|
.add_system(set_camera_viewports)
|
|
.run();
|
|
}
|
|
|
|
/// set up a simple 3D scene
|
|
fn setup(
|
|
mut commands: Commands,
|
|
asset_server: Res<AssetServer>,
|
|
mut meshes: ResMut<Assets<Mesh>>,
|
|
mut materials: ResMut<Assets<StandardMaterial>>,
|
|
) {
|
|
// plane
|
|
commands.spawn(PbrBundle {
|
|
mesh: meshes.add(Mesh::from(shape::Plane { size: 100.0 })),
|
|
material: materials.add(Color::rgb(0.3, 0.5, 0.3).into()),
|
|
..default()
|
|
});
|
|
|
|
commands.spawn(SceneBundle {
|
|
scene: asset_server.load("models/animated/Fox.glb#Scene0"),
|
|
..default()
|
|
});
|
|
|
|
// Light
|
|
commands.spawn(DirectionalLightBundle {
|
|
transform: Transform::from_rotation(Quat::from_euler(EulerRot::ZYX, 0.0, 1.0, -PI / 4.)),
|
|
directional_light: DirectionalLight {
|
|
shadows_enabled: true,
|
|
..default()
|
|
},
|
|
..default()
|
|
});
|
|
|
|
// Left Camera
|
|
commands.spawn((
|
|
Camera3dBundle {
|
|
transform: Transform::from_xyz(0.0, 200.0, -100.0).looking_at(Vec3::ZERO, Vec3::Y),
|
|
..default()
|
|
},
|
|
LeftCamera,
|
|
));
|
|
|
|
// Right Camera
|
|
commands.spawn((
|
|
Camera3dBundle {
|
|
transform: Transform::from_xyz(100.0, 100., 150.0).looking_at(Vec3::ZERO, Vec3::Y),
|
|
camera: Camera {
|
|
// Renders the right camera after the left camera, which has a default priority of 0
|
|
order: 1,
|
|
..default()
|
|
},
|
|
camera_3d: Camera3d {
|
|
// don't clear on the second camera because the first camera already cleared the window
|
|
clear_color: ClearColorConfig::None,
|
|
..default()
|
|
},
|
|
..default()
|
|
},
|
|
RightCamera,
|
|
));
|
|
}
|
|
|
|
#[derive(Component)]
|
|
struct LeftCamera;
|
|
|
|
#[derive(Component)]
|
|
struct RightCamera;
|
|
|
|
fn set_camera_viewports(
|
|
windows: Query<&Window>,
|
|
mut resize_events: EventReader<WindowResized>,
|
|
mut left_camera: Query<&mut Camera, (With<LeftCamera>, Without<RightCamera>)>,
|
|
mut right_camera: Query<&mut Camera, With<RightCamera>>,
|
|
) {
|
|
// We need to dynamically resize the camera's viewports whenever the window size changes
|
|
// so then each camera always takes up half the screen.
|
|
// A resize_event is sent when the window is first created, allowing us to reuse this system for initial setup.
|
|
for resize_event in resize_events.iter() {
|
|
let window = windows.get(resize_event.window).unwrap();
|
|
let mut left_camera = left_camera.single_mut();
|
|
left_camera.viewport = Some(Viewport {
|
|
physical_position: UVec2::new(0, 0),
|
|
physical_size: UVec2::new(
|
|
window.resolution.physical_width() / 2,
|
|
window.resolution.physical_height(),
|
|
),
|
|
..default()
|
|
});
|
|
|
|
let mut right_camera = right_camera.single_mut();
|
|
right_camera.viewport = Some(Viewport {
|
|
physical_position: UVec2::new(window.resolution.physical_width() / 2, 0),
|
|
physical_size: UVec2::new(
|
|
window.resolution.physical_width() / 2,
|
|
window.resolution.physical_height(),
|
|
),
|
|
..default()
|
|
});
|
|
}
|
|
}
|