mirror of
https://github.com/bevyengine/bevy
synced 2025-01-20 00:55:10 +00:00
60773e6787
# Objective Fixes #5101 Alternative to #6511 ## Solution Corrected the behavior for ignored fields in `FromReflect`, which was previously using the incorrect field indexes. Similarly, fields marked with `#[reflect(skip_serializing)]` no longer break when using `FromReflect` after deserialization. This was done by modifying `SerializationData` to store a function pointer that can later be used to generate a default instance of the skipped field during deserialization. The function pointer points to a function generated by the derive macro using the behavior designated by `#[reflect(default)]` (or just `Default` if none provided). The entire output of the macro is now wrapped in an [unnamed constant](https://doc.rust-lang.org/stable/reference/items/constant-items.html#unnamed-constant) which keeps this behavior hygienic. #### Rationale The biggest downside to this approach is that it requires fields marked `#[reflect(skip_serializing)]` to provide the ability to create a default instance— either via a `Default` impl or by specifying a custom one. While this isn't great, I think it might be justified by the fact that we really need to create this value when using `FromReflect` on a deserialized object. And we need to do this _during_ deserialization because after that (at least for tuples and tuple structs) we lose information about which field is which: _"is the value at index 1 in this `DynamicTupleStruct` the actual value for index 1 or is it really the value for index 2 since index 1 is skippable...?"_ #### Alternatives An alternative would be to store `Option<Box<dyn Reflect>>` within `DynamicTuple` and `DynamicTupleStruct` instead of just `Box<dyn Reflect>`. This would allow us to insert "empty"/"missing" fields during deserialization, thus saving the positional information of the skipped fields. However, this may require changing the API of `Tuple` and `TupleStruct` such that they can account for their dynamic counterparts returning `None` for a skipped field. In practice this would probably mean exposing the `Option`-ness of the dynamics onto implementors via methods like `Tuple::drain` or `TupleStruct::field`. Personally, I think requiring `Default` would be better than muddying up the API to account for these special cases. But I'm open to trying out this other approach if the community feels that it's better. --- ## Changelog ### Public Changes #### Fixed - The behaviors of `#[reflect(ignore)]` and `#[reflect(skip_serializing)]` are no longer dependent on field order #### Changed - Fields marked with `#[reflect(skip_serializing)]` now need to either implement `Default` or specify a custom default function using `#[reflect(default = "path::to::some_func")]` - Deserializing a type with fields marked `#[reflect(skip_serializing)]` will now include that field initialized to its specified default value - `SerializationData::new` now takes the new `SkippedField` struct along with the skipped field index - Renamed `SerializationData::is_ignored_field` to `SerializationData::is_field_skipped` #### Added - Added `SkippedField` struct - Added methods `SerializationData::generate_default` and `SerializationData::iter_skipped` ### Internal Changes #### Changed - Replaced `members_to_serialization_denylist` and `BitSet<u32>` with `SerializationDataDef` - The `Reflect` derive is more hygienic as it now outputs within an [unnamed constant](https://doc.rust-lang.org/stable/reference/items/constant-items.html#unnamed-constant) - `StructField::index` has been split up into `StructField::declaration_index` and `StructField::reflection_index` #### Removed - Removed `bitset` dependency ## Migration Guide * Fields marked `#[reflect(skip_serializing)]` now must implement `Default` or specify a custom default function with `#[reflect(default = "path::to::some_func")]` ```rust #[derive(Reflect)] struct MyStruct { #[reflect(skip_serializing)] #[reflect(default = "get_foo_default")] foo: Foo, // <- `Foo` does not impl `Default` so requires a custom function #[reflect(skip_serializing)] bar: Bar, // <- `Bar` impls `Default` } #[derive(Reflect)] struct Foo(i32); #[derive(Reflect, Default)] struct Bar(i32); fn get_foo_default() -> Foo { Foo(123) } ``` * `SerializationData::new` has been changed to expect an iterator of `(usize, SkippedField)` rather than one of just `usize` ```rust // BEFORE SerializationData::new([0, 3].into_iter()); // AFTER SerializationData::new([ (0, SkippedField::new(field_0_default_fn)), (3, SkippedField::new(field_3_default_fn)), ].into_iter()); ``` * `Serialization::is_ignored_field` has been renamed to `Serialization::is_field_skipped` * Fields marked `#[reflect(skip_serializing)]` are now included in deserialization output. This may affect logic that expected those fields to be absent. |
||
---|---|---|
.. | ||
bevy_reflect_derive | ||
examples | ||
src | ||
Cargo.toml | ||
README.md |
Bevy Reflect
This crate enables you to dynamically interact with Rust types:
- Derive the Reflect traits
- Interact with fields using their names (for named structs) or indices (for tuple structs)
- "Patch" your types with new values
- Look up nested fields using "path strings"
- Iterate over struct fields
- Automatically serialize and deserialize via Serde (without explicit serde impls)
- Trait "reflection"
Features
Derive the Reflect traits
// this will automatically implement the Reflect trait and the Struct trait (because the type is a struct)
#[derive(Reflect)]
struct Foo {
a: u32,
b: Bar,
c: Vec<i32>,
d: Vec<Baz>,
}
// this will automatically implement the Reflect trait and the TupleStruct trait (because the type is a tuple struct)
#[derive(Reflect)]
struct Bar(String);
#[derive(Reflect)]
struct Baz {
value: f32,
}
// We will use this value to illustrate `bevy_reflect` features
let mut foo = Foo {
a: 1,
b: Bar("hello".to_string()),
c: vec![1, 2],
d: vec![Baz { value: 3.14 }],
};
Interact with fields using their names
assert_eq!(*foo.get_field::<u32>("a").unwrap(), 1);
*foo.get_field_mut::<u32>("a").unwrap() = 2;
assert_eq!(foo.a, 2);
"Patch" your types with new values
let mut dynamic_struct = DynamicStruct::default();
dynamic_struct.insert("a", 42u32);
dynamic_struct.insert("c", vec![3, 4, 5]);
foo.apply(&dynamic_struct);
assert_eq!(foo.a, 42);
assert_eq!(foo.c, vec![3, 4, 5]);
Look up nested fields using "path strings"
let value = *foo.get_path::<f32>("d[0].value").unwrap();
assert_eq!(value, 3.14);
Iterate over struct fields
for (i, value: &Reflect) in foo.iter_fields().enumerate() {
let field_name = foo.name_at(i).unwrap();
if let Some(value) = value.downcast_ref::<u32>() {
println!("{} is a u32 with the value: {}", field_name, *value);
}
}
Automatically serialize and deserialize via Serde (without explicit serde impls)
let mut registry = TypeRegistry::default();
registry.register::<u32>();
registry.register::<i32>();
registry.register::<f32>();
registry.register::<String>();
registry.register::<Bar>();
registry.register::<Baz>();
let serializer = ReflectSerializer::new(&foo, ®istry);
let serialized = ron::ser::to_string_pretty(&serializer, ron::ser::PrettyConfig::default()).unwrap();
let mut deserializer = ron::de::Deserializer::from_str(&serialized).unwrap();
let reflect_deserializer = ReflectDeserializer::new(®istry);
let value = reflect_deserializer.deserialize(&mut deserializer).unwrap();
let dynamic_struct = value.take::<DynamicStruct>().unwrap();
assert!(foo.reflect_partial_eq(&dynamic_struct).unwrap());
Trait "reflection"
Call a trait on a given &dyn Reflect
reference without knowing the underlying type!
#[derive(Reflect)]
#[reflect(DoThing)]
struct MyType {
value: String,
}
impl DoThing for MyType {
fn do_thing(&self) -> String {
format!("{} World!", self.value)
}
}
#[reflect_trait]
pub trait DoThing {
fn do_thing(&self) -> String;
}
// First, lets box our type as a Box<dyn Reflect>
let reflect_value: Box<dyn Reflect> = Box::new(MyType {
value: "Hello".to_string(),
});
// This means we no longer have direct access to MyType or its methods. We can only call Reflect methods on reflect_value.
// What if we want to call `do_thing` on our type? We could downcast using reflect_value.downcast_ref::<MyType>(), but what if we
// don't know the type at compile time?
// Normally in rust we would be out of luck at this point. Lets use our new reflection powers to do something cool!
let mut type_registry = TypeRegistry::default();
type_registry.register::<MyType>();
// The #[reflect] attribute we put on our DoThing trait generated a new `ReflectDoThing` struct, which implements TypeData.
// This was added to MyType's TypeRegistration.
let reflect_do_thing = type_registry
.get_type_data::<ReflectDoThing>(reflect_value.type_id())
.unwrap();
// We can use this generated type to convert our `&dyn Reflect` reference to a `&dyn DoThing` reference
let my_trait: &dyn DoThing = reflect_do_thing.get(&*reflect_value).unwrap();
// Which means we can now call do_thing(). Magic!
println!("{}", my_trait.do_thing());
// This works because the #[reflect(MyTrait)] we put on MyType informed the Reflect derive to insert a new instance
// of ReflectDoThing into MyType's registration. The instance knows how to cast &dyn Reflect to &dyn DoThing, because it
// knows that &dyn Reflect should first be downcasted to &MyType, which can then be safely casted to &dyn DoThing
Why make this?
The whole point of Rust is static safety! Why build something that makes it easy to throw it all away?
- Some problems are inherently dynamic (scripting, some types of serialization / deserialization)
- Sometimes the dynamic way is easier
- Sometimes the dynamic way puts less burden on your users to derive a bunch of traits (this was a big motivator for the Bevy project)