bevy/examples/scene/scene.rs
Jasen Borisov 57f9ac18d7
OrthographicProjection scaling mode + camera bundle refactoring (#400)
* add normalized orthographic projection

* custom scale for ScaledOrthographicProjection

* allow choosing base axis for ScaledOrthographicProjection

* cargo fmt

* add general (scaled) orthographic camera bundle

FIXME: does the same "far" trick from Camera2DBundle make any sense here?

* fixes

* camera bundles: rename and new ortho constructors

* unify orthographic projections

* give PerspectiveCameraBundle constructors like those of OrthographicCameraBundle

* update examples with new camera bundle syntax

* rename CameraUiBundle to UiCameraBundle

* update examples

* ScalingMode::None

* remove extra blank lines

* sane default bounds for orthographic projection

* fix alien_cake_addict example

* reorder ScalingMode enum variants

* ios example fix
2021-01-30 02:31:03 -08:00

116 lines
4.7 KiB
Rust

use bevy::{prelude::*, reflect::TypeRegistry, utils::Duration};
/// This example illustrates loading and saving scenes from files
fn main() {
App::build()
.add_plugins(DefaultPlugins)
.register_type::<ComponentA>()
.register_type::<ComponentB>()
.add_startup_system(save_scene_system.system())
.add_startup_system(load_scene_system.system())
.add_startup_system(infotext_system.system())
.add_system(print_system.system())
.run();
}
// Registered components must implement the `Reflect` and `FromResources` traits.
// The `Reflect` trait enables serialization, deserialization, and dynamic property access.
// `Reflect` enable a bunch of cool behaviors, so its worth checking out the dedicated `reflect.rs` example.
// The `FromResources` trait determines how your component is constructed when it loads. For simple use cases you can just
// implement the `Default` trait (which automatically implements FromResources). The simplest registered component just needs
// these two derives:
#[derive(Reflect, Default)]
#[reflect(Component)] // this tells the reflect derive to also reflect component behaviors
struct ComponentA {
pub x: f32,
pub y: f32,
}
// Some components have fields that cannot (or should not) be written to scene files. These can be ignored with
// the #[reflect(ignore)] attribute. This is also generally where the `FromResources` trait comes into play.
// `FromResources` gives you access to your App's current ECS `Resources` when you construct your component.
#[derive(Reflect)]
#[reflect(Component)]
struct ComponentB {
pub value: String,
#[reflect(ignore)]
pub time_since_startup: Duration,
}
impl FromResources for ComponentB {
fn from_resources(resources: &Resources) -> Self {
let time = resources.get::<Time>().unwrap();
ComponentB {
time_since_startup: time.time_since_startup(),
value: "Default Value".to_string(),
}
}
}
fn load_scene_system(asset_server: Res<AssetServer>, mut scene_spawner: ResMut<SceneSpawner>) {
// Scenes are loaded just like any other asset.
let scene_handle: Handle<DynamicScene> = asset_server.load("scenes/load_scene_example.scn.ron");
// SceneSpawner can "spawn" scenes. "Spawning" a scene creates a new instance of the scene in the World with new entity ids.
// This guarantees that it will not overwrite existing entities.
scene_spawner.spawn_dynamic(scene_handle);
// This tells the AssetServer to watch for changes to assets.
// It enables our scenes to automatically reload in game when we modify their files
asset_server.watch_for_changes().unwrap();
}
// This system prints all ComponentA components in our world. Try making a change to a ComponentA in load_scene_example.scn.
// You should immediately see the changes appear in the console.
fn print_system(query: Query<(Entity, &ComponentA), Changed<ComponentA>>) {
for (entity, component_a) in query.iter() {
println!(" Entity({})", entity.id());
println!(
" ComponentA: {{ x: {} y: {} }}\n",
component_a.x, component_a.y
);
}
}
fn save_scene_system(_world: &mut World, resources: &mut Resources) {
// Scenes can be created from any ECS World. You can either create a new one for the scene or use the current World.
let mut world = World::new();
world.spawn((
ComponentA { x: 1.0, y: 2.0 },
ComponentB {
value: "hello".to_string(),
..ComponentB::from_resources(resources)
},
Transform::default(),
));
world.spawn((ComponentA { x: 3.0, y: 4.0 },));
// The TypeRegistry resource contains information about all registered types (including components). This is used to construct scenes.
let type_registry = resources.get::<TypeRegistry>().unwrap();
let scene = DynamicScene::from_world(&world, &type_registry);
// Scenes can be serialized like this:
println!("{}", scene.serialize_ron(&type_registry).unwrap());
// TODO: save scene
}
// This is only necessary for the info message in the UI. See examples/ui/text.rs for a standalone text example.
fn infotext_system(commands: &mut Commands, asset_server: Res<AssetServer>) {
commands.spawn(UiCameraBundle::default()).spawn(TextBundle {
style: Style {
align_self: AlignSelf::FlexEnd,
..Default::default()
},
text: Text::with_section(
"Nothing to see in this window! Check the console output!",
TextStyle {
font: asset_server.load("fonts/FiraSans-Bold.ttf"),
font_size: 50.0,
color: Color::WHITE,
},
Default::default(),
),
..Default::default()
});
}