mirror of
https://github.com/bevyengine/bevy
synced 2024-11-22 20:53:53 +00:00
dd619a1087
# Objective After adding configurable exposure, we set the default ev100 value to `7` (indoor). This brought us out of sync with Blender's configuration and defaults. This PR changes the default to `9.7` (bright indoor or very overcast outdoors), as I calibrated in #11577. This feels like a very reasonable default. The other changes generally center around tweaking Bevy's lighting defaults and examples to play nicely with this number, alongside a few other tweaks and improvements. Note that for artistic reasons I have reverted some examples, which changed to directional lights in #11581, back to point lights. Fixes #11577 --- ## Changelog - Changed `Exposure::ev100` from `7` to `9.7` to better match Blender - Renamed `ExposureSettings` to `Exposure` - `Camera3dBundle` now includes `Exposure` for discoverability - Bumped `FULL_DAYLIGHT ` and `DIRECT_SUNLIGHT` to represent the middle-to-top of those ranges instead of near the bottom - Added new `AMBIENT_DAYLIGHT` constant and set that as the new `DirectionalLight` default illuminance. - `PointLight` and `SpotLight` now have a default `intensity` of 1,000,000 lumens. This makes them actually useful in the context of the new "semi-outdoor" exposure and puts them in the "cinema lighting" category instead of the "common household light" category. They are also reasonably close to the Blender default. - `AmbientLight` default has been bumped from `20` to `80`. ## Migration Guide - The increased `Exposure::ev100` means that all existing 3D lighting will need to be adjusted to match (DirectionalLights, PointLights, SpotLights, EnvironmentMapLights, etc). Or alternatively, you can adjust the `Exposure::ev100` on your cameras to work nicely with your current lighting values. If you are currently relying on default intensity values, you might need to change the intensity to achieve the same effect. Note that in Bevy 0.12, point/spot lights had a different hard coded ev100 value than directional lights. In Bevy 0.13, they use the same ev100, so if you have both in your scene, the _scale_ between these light types has changed and you will likely need to adjust one or both of them.
160 lines
4.9 KiB
Rust
160 lines
4.9 KiB
Rust
//! Shows how to render to a texture. Useful for mirrors, UI, or exporting images.
|
|
|
|
use std::f32::consts::PI;
|
|
|
|
use bevy::{
|
|
prelude::*,
|
|
render::{
|
|
render_resource::{
|
|
Extent3d, TextureDescriptor, TextureDimension, TextureFormat, TextureUsages,
|
|
},
|
|
view::RenderLayers,
|
|
},
|
|
};
|
|
|
|
fn main() {
|
|
App::new()
|
|
.add_plugins(DefaultPlugins)
|
|
.add_systems(Startup, setup)
|
|
.add_systems(Update, (cube_rotator_system, rotator_system))
|
|
.run();
|
|
}
|
|
|
|
// Marks the first pass cube (rendered to a texture.)
|
|
#[derive(Component)]
|
|
struct FirstPassCube;
|
|
|
|
// Marks the main pass cube, to which the texture is applied.
|
|
#[derive(Component)]
|
|
struct MainPassCube;
|
|
|
|
fn setup(
|
|
mut commands: Commands,
|
|
mut meshes: ResMut<Assets<Mesh>>,
|
|
mut materials: ResMut<Assets<StandardMaterial>>,
|
|
mut images: ResMut<Assets<Image>>,
|
|
) {
|
|
let size = Extent3d {
|
|
width: 512,
|
|
height: 512,
|
|
..default()
|
|
};
|
|
|
|
// This is the texture that will be rendered to.
|
|
let mut image = Image {
|
|
texture_descriptor: TextureDescriptor {
|
|
label: None,
|
|
size,
|
|
dimension: TextureDimension::D2,
|
|
format: TextureFormat::Bgra8UnormSrgb,
|
|
mip_level_count: 1,
|
|
sample_count: 1,
|
|
usage: TextureUsages::TEXTURE_BINDING
|
|
| TextureUsages::COPY_DST
|
|
| TextureUsages::RENDER_ATTACHMENT,
|
|
view_formats: &[],
|
|
},
|
|
..default()
|
|
};
|
|
|
|
// fill image.data with zeroes
|
|
image.resize(size);
|
|
|
|
let image_handle = images.add(image);
|
|
|
|
let cube_handle = meshes.add(Cuboid::new(4.0, 4.0, 4.0));
|
|
let cube_material_handle = materials.add(StandardMaterial {
|
|
base_color: Color::rgb(0.8, 0.7, 0.6),
|
|
reflectance: 0.02,
|
|
unlit: false,
|
|
..default()
|
|
});
|
|
|
|
// This specifies the layer used for the first pass, which will be attached to the first pass camera and cube.
|
|
let first_pass_layer = RenderLayers::layer(1);
|
|
|
|
// The cube that will be rendered to the texture.
|
|
commands.spawn((
|
|
PbrBundle {
|
|
mesh: cube_handle,
|
|
material: cube_material_handle,
|
|
transform: Transform::from_translation(Vec3::new(0.0, 0.0, 1.0)),
|
|
..default()
|
|
},
|
|
FirstPassCube,
|
|
first_pass_layer,
|
|
));
|
|
|
|
// Light
|
|
// NOTE: we add the light to all layers so it affects both the rendered-to-texture cube, and the cube on which we display the texture
|
|
// Setting the layer to RenderLayers::layer(0) would cause the main view to be lit, but the rendered-to-texture cube to be unlit.
|
|
// Setting the layer to RenderLayers::layer(1) would cause the rendered-to-texture cube to be lit, but the main view to be unlit.
|
|
commands.spawn((
|
|
PointLightBundle {
|
|
transform: Transform::from_translation(Vec3::new(0.0, 0.0, 10.0)),
|
|
..default()
|
|
},
|
|
RenderLayers::all(),
|
|
));
|
|
|
|
commands.spawn((
|
|
Camera3dBundle {
|
|
camera: Camera {
|
|
// render before the "main pass" camera
|
|
order: -1,
|
|
target: image_handle.clone().into(),
|
|
clear_color: Color::WHITE.into(),
|
|
..default()
|
|
},
|
|
transform: Transform::from_translation(Vec3::new(0.0, 0.0, 15.0))
|
|
.looking_at(Vec3::ZERO, Vec3::Y),
|
|
..default()
|
|
},
|
|
first_pass_layer,
|
|
));
|
|
|
|
let cube_size = 4.0;
|
|
let cube_handle = meshes.add(Cuboid::new(cube_size, cube_size, cube_size));
|
|
|
|
// This material has the texture that has been rendered.
|
|
let material_handle = materials.add(StandardMaterial {
|
|
base_color_texture: Some(image_handle),
|
|
reflectance: 0.02,
|
|
unlit: false,
|
|
..default()
|
|
});
|
|
|
|
// Main pass cube, with material containing the rendered first pass texture.
|
|
commands.spawn((
|
|
PbrBundle {
|
|
mesh: cube_handle,
|
|
material: material_handle,
|
|
transform: Transform::from_xyz(0.0, 0.0, 1.5)
|
|
.with_rotation(Quat::from_rotation_x(-PI / 5.0)),
|
|
..default()
|
|
},
|
|
MainPassCube,
|
|
));
|
|
|
|
// The main pass camera.
|
|
commands.spawn(Camera3dBundle {
|
|
transform: Transform::from_xyz(0.0, 0.0, 15.0).looking_at(Vec3::ZERO, Vec3::Y),
|
|
..default()
|
|
});
|
|
}
|
|
|
|
/// Rotates the inner cube (first pass)
|
|
fn rotator_system(time: Res<Time>, mut query: Query<&mut Transform, With<FirstPassCube>>) {
|
|
for mut transform in &mut query {
|
|
transform.rotate_x(1.5 * time.delta_seconds());
|
|
transform.rotate_z(1.3 * time.delta_seconds());
|
|
}
|
|
}
|
|
|
|
/// Rotates the outer cube (main pass)
|
|
fn cube_rotator_system(time: Res<Time>, mut query: Query<&mut Transform, With<MainPassCube>>) {
|
|
for mut transform in &mut query {
|
|
transform.rotate_x(1.0 * time.delta_seconds());
|
|
transform.rotate_y(0.7 * time.delta_seconds());
|
|
}
|
|
}
|