bevy/crates/bevy_ecs/src/schedule/schedule.rs
Mike 0a90bac4f4
skip check change tick for apply_deferred systems (#8760)
# Objective

- Fixes https://github.com/bevyengine/bevy/issues/8410

## Solution

- Skip the check that produces the warning for apply_buffers systems.

---

## Changelog

- skip check_change_ticks for apply_buffers systems.
2023-06-06 19:47:07 +00:00

1580 lines
57 KiB
Rust

use std::{
fmt::{Debug, Write},
result::Result,
};
use bevy_utils::default;
#[cfg(feature = "trace")]
use bevy_utils::tracing::info_span;
use bevy_utils::{
petgraph::{algo::TarjanScc, prelude::*},
thiserror::Error,
tracing::{error, warn},
HashMap, HashSet,
};
use fixedbitset::FixedBitSet;
use crate::{
self as bevy_ecs,
component::{ComponentId, Components, Tick},
schedule::*,
system::{BoxedSystem, Resource, System},
world::World,
};
/// Resource that stores [`Schedule`]s mapped to [`ScheduleLabel`]s.
#[derive(Default, Resource)]
pub struct Schedules {
inner: HashMap<BoxedScheduleLabel, Schedule>,
}
impl Schedules {
/// Constructs an empty `Schedules` with zero initial capacity.
pub fn new() -> Self {
Self {
inner: HashMap::new(),
}
}
/// Inserts a labeled schedule into the map.
///
/// If the map already had an entry for `label`, `schedule` is inserted,
/// and the old schedule is returned. Otherwise, `None` is returned.
pub fn insert(&mut self, label: impl ScheduleLabel, schedule: Schedule) -> Option<Schedule> {
let label = label.dyn_clone();
self.inner.insert(label, schedule)
}
/// Removes the schedule corresponding to the `label` from the map, returning it if it existed.
pub fn remove(&mut self, label: &dyn ScheduleLabel) -> Option<Schedule> {
self.inner.remove(label)
}
/// Removes the (schedule, label) pair corresponding to the `label` from the map, returning it if it existed.
pub fn remove_entry(
&mut self,
label: &dyn ScheduleLabel,
) -> Option<(Box<dyn ScheduleLabel>, Schedule)> {
self.inner.remove_entry(label)
}
/// Does a schedule with the provided label already exist?
pub fn contains(&self, label: &dyn ScheduleLabel) -> bool {
self.inner.contains_key(label)
}
/// Returns a reference to the schedule associated with `label`, if it exists.
pub fn get(&self, label: &dyn ScheduleLabel) -> Option<&Schedule> {
self.inner.get(label)
}
/// Returns a mutable reference to the schedule associated with `label`, if it exists.
pub fn get_mut(&mut self, label: &dyn ScheduleLabel) -> Option<&mut Schedule> {
self.inner.get_mut(label)
}
/// Returns an iterator over all schedules. Iteration order is undefined.
pub fn iter(&self) -> impl Iterator<Item = (&dyn ScheduleLabel, &Schedule)> {
self.inner
.iter()
.map(|(label, schedule)| (&**label, schedule))
}
/// Returns an iterator over mutable references to all schedules. Iteration order is undefined.
pub fn iter_mut(&mut self) -> impl Iterator<Item = (&dyn ScheduleLabel, &mut Schedule)> {
self.inner
.iter_mut()
.map(|(label, schedule)| (&**label, schedule))
}
/// Iterates the change ticks of all systems in all stored schedules and clamps any older than
/// [`MAX_CHANGE_AGE`](crate::change_detection::MAX_CHANGE_AGE).
/// This prevents overflow and thus prevents false positives.
pub(crate) fn check_change_ticks(&mut self, change_tick: Tick) {
#[cfg(feature = "trace")]
let _all_span = info_span!("check stored schedule ticks").entered();
// label used when trace feature is enabled
#[allow(unused_variables)]
for (label, schedule) in self.inner.iter_mut() {
#[cfg(feature = "trace")]
let name = format!("{label:?}");
#[cfg(feature = "trace")]
let _one_span = info_span!("check schedule ticks", name = &name).entered();
schedule.check_change_ticks(change_tick);
}
}
}
fn make_executor(kind: ExecutorKind) -> Box<dyn SystemExecutor> {
match kind {
ExecutorKind::Simple => Box::new(SimpleExecutor::new()),
ExecutorKind::SingleThreaded => Box::new(SingleThreadedExecutor::new()),
ExecutorKind::MultiThreaded => Box::new(MultiThreadedExecutor::new()),
}
}
/// A collection of systems, and the metadata and executor needed to run them
/// in a certain order under certain conditions.
///
/// # Example
/// Here is an example of a `Schedule` running a "Hello world" system:
/// ```
/// # use bevy_ecs::prelude::*;
/// fn hello_world() { println!("Hello world!") }
///
/// fn main() {
/// let mut world = World::new();
/// let mut schedule = Schedule::default();
/// schedule.add_systems(hello_world);
///
/// schedule.run(&mut world);
/// }
/// ```
///
/// A schedule can also run several systems in an ordered way:
/// ```
/// # use bevy_ecs::prelude::*;
/// fn system_one() { println!("System 1 works!") }
/// fn system_two() { println!("System 2 works!") }
/// fn system_three() { println!("System 3 works!") }
///
/// fn main() {
/// let mut world = World::new();
/// let mut schedule = Schedule::default();
/// schedule.add_systems((
/// system_two,
/// system_one.before(system_two),
/// system_three.after(system_two),
/// ));
///
/// schedule.run(&mut world);
/// }
/// ```
pub struct Schedule {
graph: ScheduleGraph,
executable: SystemSchedule,
executor: Box<dyn SystemExecutor>,
executor_initialized: bool,
}
impl Default for Schedule {
fn default() -> Self {
Self::new()
}
}
impl Schedule {
/// Constructs an empty `Schedule`.
pub fn new() -> Self {
Self {
graph: ScheduleGraph::new(),
executable: SystemSchedule::new(),
executor: make_executor(ExecutorKind::default()),
executor_initialized: false,
}
}
/// Add a system to the schedule.
#[deprecated(since = "0.11.0", note = "please use `add_systems` instead")]
pub fn add_system<M>(&mut self, system: impl IntoSystemConfigs<M>) -> &mut Self {
self.graph.add_systems_inner(system.into_configs(), false);
self
}
/// Add a collection of systems to the schedule.
pub fn add_systems<M>(&mut self, systems: impl IntoSystemConfigs<M>) -> &mut Self {
self.graph.add_systems_inner(systems.into_configs(), false);
self
}
/// Configures a system set in this schedule, adding it if it does not exist.
pub fn configure_set(&mut self, set: impl IntoSystemSetConfig) -> &mut Self {
self.graph.configure_set(set);
self
}
/// Configures a collection of system sets in this schedule, adding them if they does not exist.
pub fn configure_sets(&mut self, sets: impl IntoSystemSetConfigs) -> &mut Self {
self.graph.configure_sets(sets);
self
}
/// Changes miscellaneous build settings.
pub fn set_build_settings(&mut self, settings: ScheduleBuildSettings) -> &mut Self {
self.graph.settings = settings;
self
}
/// Returns the schedule's current execution strategy.
pub fn get_executor_kind(&self) -> ExecutorKind {
self.executor.kind()
}
/// Sets the schedule's execution strategy.
pub fn set_executor_kind(&mut self, executor: ExecutorKind) -> &mut Self {
if executor != self.executor.kind() {
self.executor = make_executor(executor);
self.executor_initialized = false;
}
self
}
/// Set whether the schedule applies deferred system buffers on final time or not. This is a catch-all
/// in case a system uses commands but was not explicitly ordered before an instance of
/// [`apply_deferred`](crate::prelude::apply_deferred). By default this
/// setting is true, but may be disabled if needed.
pub fn set_apply_final_deferred(&mut self, apply_final_deferred: bool) -> &mut Self {
self.executor.set_apply_final_deferred(apply_final_deferred);
self
}
/// Runs all systems in this schedule on the `world`, using its current execution strategy.
pub fn run(&mut self, world: &mut World) {
world.check_change_ticks();
self.initialize(world).unwrap_or_else(|e| panic!("{e}"));
self.executor.run(&mut self.executable, world);
}
/// Initializes any newly-added systems and conditions, rebuilds the executable schedule,
/// and re-initializes the executor.
///
/// Moves all systems and run conditions out of the [`ScheduleGraph`].
pub fn initialize(&mut self, world: &mut World) -> Result<(), ScheduleBuildError> {
if self.graph.changed {
self.graph.initialize(world);
self.graph
.update_schedule(&mut self.executable, world.components())?;
self.graph.changed = false;
self.executor_initialized = false;
}
if !self.executor_initialized {
self.executor.init(&self.executable);
self.executor_initialized = true;
}
Ok(())
}
/// Returns the [`ScheduleGraph`].
pub fn graph(&self) -> &ScheduleGraph {
&self.graph
}
/// Returns a mutable reference to the [`ScheduleGraph`].
pub fn graph_mut(&mut self) -> &mut ScheduleGraph {
&mut self.graph
}
/// Iterates the change ticks of all systems in the schedule and clamps any older than
/// [`MAX_CHANGE_AGE`](crate::change_detection::MAX_CHANGE_AGE).
/// This prevents overflow and thus prevents false positives.
pub(crate) fn check_change_ticks(&mut self, change_tick: Tick) {
for system in &mut self.executable.systems {
if !is_apply_deferred(system) {
system.check_change_tick(change_tick);
}
}
for conditions in &mut self.executable.system_conditions {
for system in conditions.iter_mut() {
system.check_change_tick(change_tick);
}
}
for conditions in &mut self.executable.set_conditions {
for system in conditions.iter_mut() {
system.check_change_tick(change_tick);
}
}
}
/// Directly applies any accumulated [`Deferred`](crate::system::Deferred) system parameters (like [`Commands`](crate::prelude::Commands)) to the `world`.
///
/// Like always, deferred system parameters are applied in the "topological sort order" of the schedule graph.
/// As a result, buffers from one system are only guaranteed to be applied before those of other systems
/// if there is an explicit system ordering between the two systems.
///
/// This is used in rendering to extract data from the main world, storing the data in system buffers,
/// before applying their buffers in a different world.
pub fn apply_deferred(&mut self, world: &mut World) {
for system in &mut self.executable.systems {
system.apply_deferred(world);
}
}
}
/// A directed acyclic graph structure.
#[derive(Default)]
pub struct Dag {
/// A directed graph.
graph: DiGraphMap<NodeId, ()>,
/// A cached topological ordering of the graph.
topsort: Vec<NodeId>,
}
impl Dag {
fn new() -> Self {
Self {
graph: DiGraphMap::new(),
topsort: Vec::new(),
}
}
/// The directed graph of the stored systems, connected by their ordering dependencies.
pub fn graph(&self) -> &DiGraphMap<NodeId, ()> {
&self.graph
}
/// A cached topological ordering of the graph.
///
/// The order is determined by the ordering dependencies between systems.
pub fn cached_topsort(&self) -> &[NodeId] {
&self.topsort
}
}
/// A [`SystemSet`] with metadata, stored in a [`ScheduleGraph`].
struct SystemSetNode {
inner: BoxedSystemSet,
}
impl SystemSetNode {
pub fn new(set: BoxedSystemSet) -> Self {
Self { inner: set }
}
pub fn name(&self) -> String {
format!("{:?}", &self.inner)
}
pub fn is_system_type(&self) -> bool {
self.inner.system_type().is_some()
}
pub fn is_anonymous(&self) -> bool {
self.inner.is_anonymous()
}
}
/// A [`BoxedSystem`] with metadata, stored in a [`ScheduleGraph`].
struct SystemNode {
inner: Option<BoxedSystem>,
}
impl SystemNode {
pub fn new(system: BoxedSystem) -> Self {
Self {
inner: Some(system),
}
}
pub fn get(&self) -> Option<&BoxedSystem> {
self.inner.as_ref()
}
pub fn get_mut(&mut self) -> Option<&mut BoxedSystem> {
self.inner.as_mut()
}
}
/// Metadata for a [`Schedule`].
#[derive(Default)]
pub struct ScheduleGraph {
systems: Vec<SystemNode>,
system_conditions: Vec<Vec<BoxedCondition>>,
system_sets: Vec<SystemSetNode>,
system_set_conditions: Vec<Vec<BoxedCondition>>,
system_set_ids: HashMap<BoxedSystemSet, NodeId>,
uninit: Vec<(NodeId, usize)>,
hierarchy: Dag,
dependency: Dag,
dependency_flattened: Dag,
ambiguous_with: UnGraphMap<NodeId, ()>,
ambiguous_with_flattened: UnGraphMap<NodeId, ()>,
ambiguous_with_all: HashSet<NodeId>,
conflicting_systems: Vec<(NodeId, NodeId, Vec<ComponentId>)>,
changed: bool,
settings: ScheduleBuildSettings,
}
impl ScheduleGraph {
pub fn new() -> Self {
Self {
systems: Vec::new(),
system_conditions: Vec::new(),
system_sets: Vec::new(),
system_set_conditions: Vec::new(),
system_set_ids: HashMap::new(),
uninit: Vec::new(),
hierarchy: Dag::new(),
dependency: Dag::new(),
dependency_flattened: Dag::new(),
ambiguous_with: UnGraphMap::new(),
ambiguous_with_flattened: UnGraphMap::new(),
ambiguous_with_all: HashSet::new(),
conflicting_systems: Vec::new(),
changed: false,
settings: default(),
}
}
/// Returns the system at the given [`NodeId`], if it exists.
pub fn get_system_at(&self, id: NodeId) -> Option<&dyn System<In = (), Out = ()>> {
if !id.is_system() {
return None;
}
self.systems
.get(id.index())
.and_then(|system| system.inner.as_deref())
}
/// Returns the system at the given [`NodeId`].
///
/// Panics if it doesn't exist.
#[track_caller]
pub fn system_at(&self, id: NodeId) -> &dyn System<In = (), Out = ()> {
self.get_system_at(id)
.ok_or_else(|| format!("system with id {id:?} does not exist in this Schedule"))
.unwrap()
}
/// Returns the set at the given [`NodeId`], if it exists.
pub fn get_set_at(&self, id: NodeId) -> Option<&dyn SystemSet> {
if !id.is_set() {
return None;
}
self.system_sets.get(id.index()).map(|set| &*set.inner)
}
/// Returns the set at the given [`NodeId`].
///
/// Panics if it doesn't exist.
#[track_caller]
pub fn set_at(&self, id: NodeId) -> &dyn SystemSet {
self.get_set_at(id)
.ok_or_else(|| format!("set with id {id:?} does not exist in this Schedule"))
.unwrap()
}
/// Returns an iterator over all systems in this schedule.
pub fn systems(
&self,
) -> impl Iterator<Item = (NodeId, &dyn System<In = (), Out = ()>, &[BoxedCondition])> {
self.systems
.iter()
.zip(self.system_conditions.iter())
.enumerate()
.filter_map(|(i, (system_node, condition))| {
let system = system_node.inner.as_deref()?;
Some((NodeId::System(i), system, condition.as_slice()))
})
}
/// Returns an iterator over all system sets in this schedule.
pub fn system_sets(&self) -> impl Iterator<Item = (NodeId, &dyn SystemSet, &[BoxedCondition])> {
self.system_set_ids.iter().map(|(_, &node_id)| {
let set_node = &self.system_sets[node_id.index()];
let set = &*set_node.inner;
let conditions = self.system_set_conditions[node_id.index()].as_slice();
(node_id, set, conditions)
})
}
/// Returns the [`Dag`] of the hierarchy.
///
/// The hierarchy is a directed acyclic graph of the systems and sets,
/// where an edge denotes that a system or set is the child of another set.
pub fn hierarchy(&self) -> &Dag {
&self.hierarchy
}
/// Returns the [`Dag`] of the dependencies in the schedule.
///
/// Nodes in this graph are systems and sets, and edges denote that
/// a system or set has to run before another system or set.
pub fn dependency(&self) -> &Dag {
&self.dependency
}
/// Returns the list of systems that conflict with each other, i.e. have ambiguities in their access.
///
/// If the `Vec<ComponentId>` is empty, the systems conflict on [`World`] access.
/// Must be called after [`ScheduleGraph::build_schedule`] to be non-empty.
pub fn conflicting_systems(&self) -> &[(NodeId, NodeId, Vec<ComponentId>)] {
&self.conflicting_systems
}
/// Adds the systems to the graph. Returns a vector of all node ids contained the nested `SystemConfigs`
/// if `ancestor_chained` is true. Also returns true if "densely chained", meaning that all nested items
/// are linearly chained in the order they are defined
fn add_systems_inner(
&mut self,
configs: SystemConfigs,
ancestor_chained: bool,
) -> AddSystemsInnerResult {
match configs {
SystemConfigs::SystemConfig(config) => {
let node_id = self.add_system_inner(config).unwrap();
if ancestor_chained {
AddSystemsInnerResult {
densely_chained: true,
nodes: vec![node_id],
}
} else {
AddSystemsInnerResult {
densely_chained: true,
nodes: Vec::new(),
}
}
}
SystemConfigs::Configs {
mut configs,
collective_conditions,
chained,
} => {
let more_than_one_entry = configs.len() > 1;
if !collective_conditions.is_empty() {
if more_than_one_entry {
let set = AnonymousSet::new();
for config in &mut configs {
config.in_set_inner(set.dyn_clone());
}
let mut set_config = set.into_config();
set_config.conditions.extend(collective_conditions);
self.configure_set(set_config);
} else {
for condition in collective_conditions {
configs[0].run_if_inner(condition);
}
}
}
let mut config_iter = configs.into_iter();
let mut nodes_in_scope = Vec::new();
let mut densely_chained = true;
if chained {
let Some(prev) = config_iter.next() else {
return AddSystemsInnerResult {
nodes: Vec::new(),
densely_chained: true
}
};
let mut previous_result = self.add_systems_inner(prev, true);
densely_chained = previous_result.densely_chained;
for current in config_iter {
let current_result = self.add_systems_inner(current, true);
densely_chained = densely_chained && current_result.densely_chained;
match (
previous_result.densely_chained,
current_result.densely_chained,
) {
// Both groups are "densely" chained, so we can simplify the graph by only
// chaining the last in the previous list to the first in the current list
(true, true) => {
let last_in_prev = previous_result.nodes.last().unwrap();
let first_in_current = current_result.nodes.first().unwrap();
self.dependency.graph.add_edge(
*last_in_prev,
*first_in_current,
(),
);
}
// The previous group is "densely" chained, so we can simplify the graph by only
// chaining the last item from the previous list to every item in the current list
(true, false) => {
let last_in_prev = previous_result.nodes.last().unwrap();
for current_node in &current_result.nodes {
self.dependency.graph.add_edge(
*last_in_prev,
*current_node,
(),
);
}
}
// The current list is currently "densely" chained, so we can simplify the graph by
// only chaining every item in the previous list to the first item in the current list
(false, true) => {
let first_in_current = current_result.nodes.first().unwrap();
for previous_node in &previous_result.nodes {
self.dependency.graph.add_edge(
*previous_node,
*first_in_current,
(),
);
}
}
// Neither of the lists are "densely" chained, so we must chain every item in the first
// list to every item in the second list
(false, false) => {
for previous_node in &previous_result.nodes {
for current_node in &current_result.nodes {
self.dependency.graph.add_edge(
*previous_node,
*current_node,
(),
);
}
}
}
}
if ancestor_chained {
nodes_in_scope.append(&mut previous_result.nodes);
}
previous_result = current_result;
}
// ensure the last config's nodes are added
if ancestor_chained {
nodes_in_scope.append(&mut previous_result.nodes);
}
} else {
for config in config_iter {
let result = self.add_systems_inner(config, ancestor_chained);
densely_chained = densely_chained && result.densely_chained;
if ancestor_chained {
nodes_in_scope.extend(result.nodes);
}
}
// an "unchained" SystemConfig is only densely chained if it has exactly one densely chained entry
if more_than_one_entry {
densely_chained = false;
}
}
AddSystemsInnerResult {
nodes: nodes_in_scope,
densely_chained,
}
}
}
}
fn add_system_inner(&mut self, config: SystemConfig) -> Result<NodeId, ScheduleBuildError> {
let id = NodeId::System(self.systems.len());
// graph updates are immediate
self.update_graphs(id, config.graph_info)?;
// system init has to be deferred (need `&mut World`)
self.uninit.push((id, 0));
self.systems.push(SystemNode::new(config.system));
self.system_conditions.push(config.conditions);
Ok(id)
}
fn configure_sets(&mut self, sets: impl IntoSystemSetConfigs) {
let SystemSetConfigs { sets, chained } = sets.into_configs();
let mut set_iter = sets.into_iter();
if chained {
let Some(prev) = set_iter.next() else { return };
let mut prev_id = self.configure_set_inner(prev).unwrap();
for next in set_iter {
let next_id = self.configure_set_inner(next).unwrap();
self.dependency.graph.add_edge(prev_id, next_id, ());
prev_id = next_id;
}
} else {
for set in set_iter {
self.configure_set_inner(set).unwrap();
}
}
}
fn configure_set(&mut self, set: impl IntoSystemSetConfig) {
self.configure_set_inner(set).unwrap();
}
fn configure_set_inner(
&mut self,
set: impl IntoSystemSetConfig,
) -> Result<NodeId, ScheduleBuildError> {
let SystemSetConfig {
set,
graph_info,
mut conditions,
} = set.into_config();
let id = match self.system_set_ids.get(&set) {
Some(&id) => id,
None => self.add_set(set.dyn_clone()),
};
// graph updates are immediate
self.update_graphs(id, graph_info)?;
// system init has to be deferred (need `&mut World`)
let system_set_conditions = &mut self.system_set_conditions[id.index()];
self.uninit.push((id, system_set_conditions.len()));
system_set_conditions.append(&mut conditions);
Ok(id)
}
fn add_set(&mut self, set: BoxedSystemSet) -> NodeId {
let id = NodeId::Set(self.system_sets.len());
self.system_sets.push(SystemSetNode::new(set.dyn_clone()));
self.system_set_conditions.push(Vec::new());
self.system_set_ids.insert(set, id);
id
}
fn check_set(&mut self, id: &NodeId, set: &dyn SystemSet) -> Result<(), ScheduleBuildError> {
match self.system_set_ids.get(set) {
Some(set_id) => {
if id == set_id {
return Err(ScheduleBuildError::HierarchyLoop(self.get_node_name(id)));
}
}
None => {
self.add_set(set.dyn_clone());
}
}
Ok(())
}
fn check_sets(
&mut self,
id: &NodeId,
graph_info: &GraphInfo,
) -> Result<(), ScheduleBuildError> {
for set in &graph_info.sets {
self.check_set(id, &**set)?;
}
if let Some(base_set) = &graph_info.base_set {
self.check_set(id, &**base_set)?;
}
Ok(())
}
fn check_edges(
&mut self,
id: &NodeId,
graph_info: &GraphInfo,
) -> Result<(), ScheduleBuildError> {
for Dependency { kind: _, set } in &graph_info.dependencies {
match self.system_set_ids.get(set) {
Some(set_id) => {
if id == set_id {
return Err(ScheduleBuildError::DependencyLoop(self.get_node_name(id)));
}
}
None => {
self.add_set(set.dyn_clone());
}
}
}
if let Ambiguity::IgnoreWithSet(ambiguous_with) = &graph_info.ambiguous_with {
for set in ambiguous_with {
if !self.system_set_ids.contains_key(set) {
self.add_set(set.dyn_clone());
}
}
}
Ok(())
}
fn update_graphs(
&mut self,
id: NodeId,
graph_info: GraphInfo,
) -> Result<(), ScheduleBuildError> {
self.check_sets(&id, &graph_info)?;
self.check_edges(&id, &graph_info)?;
self.changed = true;
let GraphInfo {
sets,
dependencies,
ambiguous_with,
..
} = graph_info;
self.hierarchy.graph.add_node(id);
self.dependency.graph.add_node(id);
for set in sets.into_iter().map(|set| self.system_set_ids[&set]) {
self.hierarchy.graph.add_edge(set, id, ());
// ensure set also appears in dependency graph
self.dependency.graph.add_node(set);
}
if !self.dependency.graph.contains_node(id) {
self.dependency.graph.add_node(id);
}
for (kind, set) in dependencies
.into_iter()
.map(|Dependency { kind, set }| (kind, self.system_set_ids[&set]))
{
let (lhs, rhs) = match kind {
DependencyKind::Before => (id, set),
DependencyKind::After => (set, id),
};
self.dependency.graph.add_edge(lhs, rhs, ());
// ensure set also appears in hierarchy graph
self.hierarchy.graph.add_node(set);
}
match ambiguous_with {
Ambiguity::Check => (),
Ambiguity::IgnoreWithSet(ambiguous_with) => {
for set in ambiguous_with
.into_iter()
.map(|set| self.system_set_ids[&set])
{
self.ambiguous_with.add_edge(id, set, ());
}
}
Ambiguity::IgnoreAll => {
self.ambiguous_with_all.insert(id);
}
}
Ok(())
}
/// Initializes any newly-added systems and conditions by calling [`System::initialize`]
pub fn initialize(&mut self, world: &mut World) {
for (id, i) in self.uninit.drain(..) {
match id {
NodeId::System(index) => {
self.systems[index].get_mut().unwrap().initialize(world);
for condition in &mut self.system_conditions[index] {
condition.initialize(world);
}
}
NodeId::Set(index) => {
for condition in self.system_set_conditions[index].iter_mut().skip(i) {
condition.initialize(world);
}
}
}
}
}
/// Build a [`SystemSchedule`] optimized for scheduler access from the [`ScheduleGraph`].
///
/// This method also
/// - checks for dependency or hierarchy cycles
/// - checks for system access conflicts and reports ambiguities
pub fn build_schedule(
&mut self,
components: &Components,
) -> Result<SystemSchedule, ScheduleBuildError> {
// check hierarchy for cycles
self.hierarchy.topsort = self
.topsort_graph(&self.hierarchy.graph, ReportCycles::Hierarchy)
.map_err(|_| ScheduleBuildError::HierarchyCycle)?;
let hier_results = check_graph(&self.hierarchy.graph, &self.hierarchy.topsort);
if self.settings.hierarchy_detection != LogLevel::Ignore
&& self.contains_hierarchy_conflicts(&hier_results.transitive_edges)
{
self.report_hierarchy_conflicts(&hier_results.transitive_edges);
if matches!(self.settings.hierarchy_detection, LogLevel::Error) {
return Err(ScheduleBuildError::HierarchyRedundancy);
}
}
// remove redundant edges
self.hierarchy.graph = hier_results.transitive_reduction;
// check dependencies for cycles
self.dependency.topsort = self
.topsort_graph(&self.dependency.graph, ReportCycles::Dependency)
.map_err(|_| ScheduleBuildError::DependencyCycle)?;
// check for systems or system sets depending on sets they belong to
let dep_results = check_graph(&self.dependency.graph, &self.dependency.topsort);
for &(a, b) in dep_results.connected.iter() {
if hier_results.connected.contains(&(a, b)) || hier_results.connected.contains(&(b, a))
{
let name_a = self.get_node_name(&a);
let name_b = self.get_node_name(&b);
return Err(ScheduleBuildError::CrossDependency(name_a, name_b));
}
}
// map all system sets to their systems
// go in reverse topological order (bottom-up) for efficiency
let mut set_systems: HashMap<NodeId, Vec<NodeId>> =
HashMap::with_capacity(self.system_sets.len());
let mut set_system_bitsets = HashMap::with_capacity(self.system_sets.len());
for &id in self.hierarchy.topsort.iter().rev() {
if id.is_system() {
continue;
}
let mut systems = Vec::new();
let mut system_bitset = FixedBitSet::with_capacity(self.systems.len());
for child in self
.hierarchy
.graph
.neighbors_directed(id, Direction::Outgoing)
{
match child {
NodeId::System(_) => {
systems.push(child);
system_bitset.insert(child.index());
}
NodeId::Set(_) => {
let child_systems = set_systems.get(&child).unwrap();
let child_system_bitset = set_system_bitsets.get(&child).unwrap();
systems.extend_from_slice(child_systems);
system_bitset.union_with(child_system_bitset);
}
}
}
set_systems.insert(id, systems);
set_system_bitsets.insert(id, system_bitset);
}
// check that there is no ordering between system sets that intersect
for (a, b) in dep_results.connected.iter() {
if !(a.is_set() && b.is_set()) {
continue;
}
let a_systems = set_system_bitsets.get(a).unwrap();
let b_systems = set_system_bitsets.get(b).unwrap();
if !(a_systems.is_disjoint(b_systems)) {
return Err(ScheduleBuildError::SetsHaveOrderButIntersect(
self.get_node_name(a),
self.get_node_name(b),
));
}
}
// check that there are no edges to system-type sets that have multiple instances
for (&id, systems) in set_systems.iter() {
let set = &self.system_sets[id.index()];
if set.is_system_type() {
let instances = systems.len();
let ambiguous_with = self.ambiguous_with.edges(id);
let before = self
.dependency
.graph
.edges_directed(id, Direction::Incoming);
let after = self
.dependency
.graph
.edges_directed(id, Direction::Outgoing);
let relations = before.count() + after.count() + ambiguous_with.count();
if instances > 1 && relations > 0 {
return Err(ScheduleBuildError::SystemTypeSetAmbiguity(
self.get_node_name(&id),
));
}
}
}
// flatten: combine `in_set` with `before` and `after` information
// have to do it like this to preserve transitivity
let mut dependency_flattened = self.dependency.graph.clone();
let mut temp = Vec::new();
for (&set, systems) in set_systems.iter() {
if systems.is_empty() {
for a in dependency_flattened.neighbors_directed(set, Direction::Incoming) {
for b in dependency_flattened.neighbors_directed(set, Direction::Outgoing) {
temp.push((a, b));
}
}
} else {
for a in dependency_flattened.neighbors_directed(set, Direction::Incoming) {
for &sys in systems {
temp.push((a, sys));
}
}
for b in dependency_flattened.neighbors_directed(set, Direction::Outgoing) {
for &sys in systems {
temp.push((sys, b));
}
}
}
dependency_flattened.remove_node(set);
for (a, b) in temp.drain(..) {
dependency_flattened.add_edge(a, b, ());
}
}
// topsort
self.dependency_flattened.topsort = self
.topsort_graph(&dependency_flattened, ReportCycles::Dependency)
.map_err(|_| ScheduleBuildError::DependencyCycle)?;
self.dependency_flattened.graph = dependency_flattened;
let flat_results = check_graph(
&self.dependency_flattened.graph,
&self.dependency_flattened.topsort,
);
// remove redundant edges
self.dependency_flattened.graph = flat_results.transitive_reduction;
// flatten: combine `in_set` with `ambiguous_with` information
let mut ambiguous_with_flattened = UnGraphMap::new();
for (lhs, rhs, _) in self.ambiguous_with.all_edges() {
match (lhs, rhs) {
(NodeId::System(_), NodeId::System(_)) => {
ambiguous_with_flattened.add_edge(lhs, rhs, ());
}
(NodeId::Set(_), NodeId::System(_)) => {
for &lhs_ in set_systems.get(&lhs).unwrap_or(&Vec::new()) {
ambiguous_with_flattened.add_edge(lhs_, rhs, ());
}
}
(NodeId::System(_), NodeId::Set(_)) => {
for &rhs_ in set_systems.get(&rhs).unwrap_or(&Vec::new()) {
ambiguous_with_flattened.add_edge(lhs, rhs_, ());
}
}
(NodeId::Set(_), NodeId::Set(_)) => {
for &lhs_ in set_systems.get(&lhs).unwrap_or(&Vec::new()) {
for &rhs_ in set_systems.get(&rhs).unwrap_or(&vec![]) {
ambiguous_with_flattened.add_edge(lhs_, rhs_, ());
}
}
}
}
}
self.ambiguous_with_flattened = ambiguous_with_flattened;
// check for conflicts
let mut conflicting_systems = Vec::new();
for &(a, b) in &flat_results.disconnected {
if self.ambiguous_with_flattened.contains_edge(a, b)
|| self.ambiguous_with_all.contains(&a)
|| self.ambiguous_with_all.contains(&b)
{
continue;
}
let system_a = self.systems[a.index()].get().unwrap();
let system_b = self.systems[b.index()].get().unwrap();
if system_a.is_exclusive() || system_b.is_exclusive() {
conflicting_systems.push((a, b, Vec::new()));
} else {
let access_a = system_a.component_access();
let access_b = system_b.component_access();
if !access_a.is_compatible(access_b) {
let conflicts = access_a.get_conflicts(access_b);
conflicting_systems.push((a, b, conflicts));
}
}
}
if self.settings.ambiguity_detection != LogLevel::Ignore
&& self.contains_conflicts(&conflicting_systems)
{
self.report_conflicts(&conflicting_systems, components);
if matches!(self.settings.ambiguity_detection, LogLevel::Error) {
return Err(ScheduleBuildError::Ambiguity);
}
}
self.conflicting_systems = conflicting_systems;
// build the schedule
let dg_system_ids = self.dependency_flattened.topsort.clone();
let dg_system_idx_map = dg_system_ids
.iter()
.cloned()
.enumerate()
.map(|(i, id)| (id, i))
.collect::<HashMap<_, _>>();
let hg_systems = self
.hierarchy
.topsort
.iter()
.cloned()
.enumerate()
.filter(|&(_i, id)| id.is_system())
.collect::<Vec<_>>();
let (hg_set_with_conditions_idxs, hg_set_ids): (Vec<_>, Vec<_>) = self
.hierarchy
.topsort
.iter()
.cloned()
.enumerate()
.filter(|&(_i, id)| {
// ignore system sets that have no conditions
// ignore system type sets (already covered, they don't have conditions)
id.is_set() && !self.system_set_conditions[id.index()].is_empty()
})
.unzip();
let sys_count = self.systems.len();
let set_with_conditions_count = hg_set_ids.len();
let node_count = self.systems.len() + self.system_sets.len();
// get the number of dependencies and the immediate dependents of each system
// (needed by multi-threaded executor to run systems in the correct order)
let mut system_dependencies = Vec::with_capacity(sys_count);
let mut system_dependents = Vec::with_capacity(sys_count);
for &sys_id in &dg_system_ids {
let num_dependencies = self
.dependency_flattened
.graph
.neighbors_directed(sys_id, Direction::Incoming)
.count();
let dependents = self
.dependency_flattened
.graph
.neighbors_directed(sys_id, Direction::Outgoing)
.map(|dep_id| dg_system_idx_map[&dep_id])
.collect::<Vec<_>>();
system_dependencies.push(num_dependencies);
system_dependents.push(dependents);
}
// get the rows and columns of the hierarchy graph's reachability matrix
// (needed to we can evaluate conditions in the correct order)
let mut systems_in_sets_with_conditions =
vec![FixedBitSet::with_capacity(sys_count); set_with_conditions_count];
for (i, &row) in hg_set_with_conditions_idxs.iter().enumerate() {
let bitset = &mut systems_in_sets_with_conditions[i];
for &(col, sys_id) in &hg_systems {
let idx = dg_system_idx_map[&sys_id];
let is_descendant = hier_results.reachable[index(row, col, node_count)];
bitset.set(idx, is_descendant);
}
}
let mut sets_with_conditions_of_systems =
vec![FixedBitSet::with_capacity(set_with_conditions_count); sys_count];
for &(col, sys_id) in &hg_systems {
let i = dg_system_idx_map[&sys_id];
let bitset = &mut sets_with_conditions_of_systems[i];
for (idx, &row) in hg_set_with_conditions_idxs
.iter()
.enumerate()
.take_while(|&(_idx, &row)| row < col)
{
let is_ancestor = hier_results.reachable[index(row, col, node_count)];
bitset.set(idx, is_ancestor);
}
}
Ok(SystemSchedule {
systems: Vec::with_capacity(sys_count),
system_conditions: Vec::with_capacity(sys_count),
set_conditions: Vec::with_capacity(set_with_conditions_count),
system_ids: dg_system_ids,
set_ids: hg_set_ids,
system_dependencies,
system_dependents,
sets_with_conditions_of_systems,
systems_in_sets_with_conditions,
})
}
fn update_schedule(
&mut self,
schedule: &mut SystemSchedule,
components: &Components,
) -> Result<(), ScheduleBuildError> {
if !self.uninit.is_empty() {
return Err(ScheduleBuildError::Uninitialized);
}
// move systems out of old schedule
for ((id, system), conditions) in schedule
.system_ids
.drain(..)
.zip(schedule.systems.drain(..))
.zip(schedule.system_conditions.drain(..))
{
self.systems[id.index()].inner = Some(system);
self.system_conditions[id.index()] = conditions;
}
for (id, conditions) in schedule
.set_ids
.drain(..)
.zip(schedule.set_conditions.drain(..))
{
self.system_set_conditions[id.index()] = conditions;
}
*schedule = self.build_schedule(components)?;
// move systems into new schedule
for &id in &schedule.system_ids {
let system = self.systems[id.index()].inner.take().unwrap();
let conditions = std::mem::take(&mut self.system_conditions[id.index()]);
schedule.systems.push(system);
schedule.system_conditions.push(conditions);
}
for &id in &schedule.set_ids {
let conditions = std::mem::take(&mut self.system_set_conditions[id.index()]);
schedule.set_conditions.push(conditions);
}
Ok(())
}
}
/// Values returned by `ScheduleGraph::add_systems_inner`
struct AddSystemsInnerResult {
/// All nodes contained inside this add_systems_inner call's SystemConfigs hierarchy
nodes: Vec<NodeId>,
/// True if and only if all nodes are "densely chained"
densely_chained: bool,
}
/// Used to select the appropriate reporting function.
enum ReportCycles {
Hierarchy,
Dependency,
}
// methods for reporting errors
impl ScheduleGraph {
fn get_node_name(&self, id: &NodeId) -> String {
let mut name = match id {
NodeId::System(_) => {
let name = self.systems[id.index()].get().unwrap().name().to_string();
if self.settings.report_sets {
let sets = self.names_of_sets_containing_node(id);
if sets.is_empty() {
name
} else if sets.len() == 1 {
format!("{name} (in set {})", sets[0])
} else {
format!("{name} (in sets {})", sets.join(", "))
}
} else {
name
}
}
NodeId::Set(_) => {
let set = &self.system_sets[id.index()];
if set.is_anonymous() {
self.anonymous_set_name(id)
} else {
set.name()
}
}
};
if self.settings.use_shortnames {
name = bevy_utils::get_short_name(&name);
}
name
}
fn anonymous_set_name(&self, id: &NodeId) -> String {
format!(
"({})",
self.hierarchy
.graph
.edges_directed(*id, Direction::Outgoing)
.map(|(_, member_id, _)| self.get_node_name(&member_id))
.reduce(|a, b| format!("{a}, {b}"))
.unwrap_or_default()
)
}
fn get_node_kind(&self, id: &NodeId) -> &'static str {
match id {
NodeId::System(_) => "system",
NodeId::Set(_) => "system set",
}
}
fn contains_hierarchy_conflicts(&self, transitive_edges: &[(NodeId, NodeId)]) -> bool {
if transitive_edges.is_empty() {
return false;
}
true
}
fn report_hierarchy_conflicts(&self, transitive_edges: &[(NodeId, NodeId)]) {
let mut message = String::from("hierarchy contains redundant edge(s)");
for (parent, child) in transitive_edges {
writeln!(
message,
" -- {:?} '{:?}' cannot be child of set '{:?}', longer path exists",
self.get_node_kind(child),
self.get_node_name(child),
self.get_node_name(parent),
)
.unwrap();
}
error!("{}", message);
}
/// Tries to topologically sort `graph`.
///
/// If the graph is acyclic, returns [`Ok`] with the list of [`NodeId`] in a valid
/// topological order. If the graph contains cycles, returns [`Err`] with the list of
/// strongly-connected components that contain cycles (also in a valid topological order).
///
/// # Errors
///
/// If the graph contain cycles, then an error is returned.
fn topsort_graph(
&self,
graph: &DiGraphMap<NodeId, ()>,
report: ReportCycles,
) -> Result<Vec<NodeId>, Vec<Vec<NodeId>>> {
// Tarjan's SCC algorithm returns elements in *reverse* topological order.
let mut tarjan_scc = TarjanScc::new();
let mut top_sorted_nodes = Vec::with_capacity(graph.node_count());
let mut sccs_with_cycles = Vec::new();
tarjan_scc.run(graph, |scc| {
// A strongly-connected component is a group of nodes who can all reach each other
// through one or more paths. If an SCC contains more than one node, there must be
// at least one cycle within them.
if scc.len() > 1 {
sccs_with_cycles.push(scc.to_vec());
}
top_sorted_nodes.extend_from_slice(scc);
});
if sccs_with_cycles.is_empty() {
// reverse to get topological order
top_sorted_nodes.reverse();
Ok(top_sorted_nodes)
} else {
let mut cycles = Vec::new();
for scc in &sccs_with_cycles {
cycles.append(&mut simple_cycles_in_component(graph, scc));
}
match report {
ReportCycles::Hierarchy => self.report_hierarchy_cycles(&cycles),
ReportCycles::Dependency => self.report_dependency_cycles(&cycles),
}
Err(sccs_with_cycles)
}
}
/// Logs details of cycles in the hierarchy graph.
fn report_hierarchy_cycles(&self, cycles: &[Vec<NodeId>]) {
let mut message = format!("schedule has {} in_set cycle(s):\n", cycles.len());
for (i, cycle) in cycles.iter().enumerate() {
let mut names = cycle.iter().map(|id| self.get_node_name(id));
let first_name = names.next().unwrap();
writeln!(
message,
"cycle {}: set '{first_name}' contains itself",
i + 1,
)
.unwrap();
writeln!(message, "set '{first_name}'").unwrap();
for name in names.chain(std::iter::once(first_name)) {
writeln!(message, " ... which contains set '{name}'").unwrap();
}
writeln!(message).unwrap();
}
error!("{}", message);
}
/// Logs details of cycles in the dependency graph.
fn report_dependency_cycles(&self, cycles: &[Vec<NodeId>]) {
let mut message = format!("schedule has {} before/after cycle(s):\n", cycles.len());
for (i, cycle) in cycles.iter().enumerate() {
let mut names = cycle
.iter()
.map(|id| (self.get_node_kind(id), self.get_node_name(id)));
let (first_kind, first_name) = names.next().unwrap();
writeln!(
message,
"cycle {}: {first_kind} '{first_name}' must run before itself",
i + 1,
)
.unwrap();
writeln!(message, "{first_kind} '{first_name}'").unwrap();
for (kind, name) in names.chain(std::iter::once((first_kind, first_name))) {
writeln!(message, " ... which must run before {kind} '{name}'").unwrap();
}
writeln!(message).unwrap();
}
error!("{}", message);
}
fn contains_conflicts(&self, conflicts: &[(NodeId, NodeId, Vec<ComponentId>)]) -> bool {
if conflicts.is_empty() {
return false;
}
true
}
fn report_conflicts(
&self,
ambiguities: &[(NodeId, NodeId, Vec<ComponentId>)],
components: &Components,
) {
let n_ambiguities = ambiguities.len();
let mut string = format!(
"{n_ambiguities} pairs of systems with conflicting data access have indeterminate execution order. \
Consider adding `before`, `after`, or `ambiguous_with` relationships between these:\n",
);
for (system_a, system_b, conflicts) in ambiguities {
let name_a = self.get_node_name(system_a);
let name_b = self.get_node_name(system_b);
debug_assert!(system_a.is_system(), "{name_a} is not a system.");
debug_assert!(system_b.is_system(), "{name_b} is not a system.");
writeln!(string, " -- {name_a} and {name_b}").unwrap();
if !conflicts.is_empty() {
let conflict_names: Vec<_> = conflicts
.iter()
.map(|id| components.get_name(*id).unwrap())
.collect();
writeln!(string, " conflict on: {conflict_names:?}").unwrap();
} else {
// one or both systems must be exclusive
let world = std::any::type_name::<World>();
writeln!(string, " conflict on: {world}").unwrap();
}
}
warn!("{}", string);
}
fn traverse_sets_containing_node(&self, id: NodeId, f: &mut impl FnMut(NodeId) -> bool) {
for (set_id, _, _) in self.hierarchy.graph.edges_directed(id, Direction::Incoming) {
if f(set_id) {
self.traverse_sets_containing_node(set_id, f);
}
}
}
fn names_of_sets_containing_node(&self, id: &NodeId) -> Vec<String> {
let mut sets = HashSet::new();
self.traverse_sets_containing_node(*id, &mut |set_id| {
!self.system_sets[set_id.index()].is_system_type() && sets.insert(set_id)
});
let mut sets: Vec<_> = sets
.into_iter()
.map(|set_id| self.get_node_name(&set_id))
.collect();
sets.sort();
sets
}
}
/// Category of errors encountered during schedule construction.
#[derive(Error, Debug)]
#[non_exhaustive]
pub enum ScheduleBuildError {
/// A system set contains itself.
#[error("`{0:?}` contains itself.")]
HierarchyLoop(String),
/// The hierarchy of system sets contains a cycle.
#[error("System set hierarchy contains cycle(s).")]
HierarchyCycle,
/// The hierarchy of system sets contains redundant edges.
///
/// This error is disabled by default, but can be opted-in using [`ScheduleBuildSettings`].
#[error("System set hierarchy contains redundant edges.")]
HierarchyRedundancy,
/// A system (set) has been told to run before itself.
#[error("`{0:?}` depends on itself.")]
DependencyLoop(String),
/// The dependency graph contains a cycle.
#[error("System dependencies contain cycle(s).")]
DependencyCycle,
/// Tried to order a system (set) relative to a system set it belongs to.
#[error("`{0:?}` and `{1:?}` have both `in_set` and `before`-`after` relationships (these might be transitive). This combination is unsolvable as a system cannot run before or after a set it belongs to.")]
CrossDependency(String, String),
/// Tried to order system sets that share systems.
#[error("`{0:?}` and `{1:?}` have a `before`-`after` relationship (which may be transitive) but share systems.")]
SetsHaveOrderButIntersect(String, String),
/// Tried to order a system (set) relative to all instances of some system function.
#[error("Tried to order against `fn {0:?}` in a schedule that has more than one `{0:?}` instance. `fn {0:?}` is a `SystemTypeSet` and cannot be used for ordering if ambiguous. Use a different set without this restriction.")]
SystemTypeSetAmbiguity(String),
/// Systems with conflicting access have indeterminate run order.
///
/// This error is disabled by default, but can be opted-in using [`ScheduleBuildSettings`].
#[error("Systems with conflicting access have indeterminate run order.")]
Ambiguity,
/// Tried to run a schedule before all of its systems have been initialized.
#[error("Systems in schedule have not been initialized.")]
Uninitialized,
}
/// Specifies how schedule construction should respond to detecting a certain kind of issue.
#[derive(Debug, Clone, PartialEq)]
pub enum LogLevel {
/// Occurrences are completely ignored.
Ignore,
/// Occurrences are logged only.
Warn,
/// Occurrences are logged and result in errors.
Error,
}
/// Specifies miscellaneous settings for schedule construction.
#[derive(Clone, Debug)]
pub struct ScheduleBuildSettings {
/// Determines whether the presence of ambiguities (systems with conflicting access but indeterminate order)
/// is only logged or also results in an [`Ambiguity`](ScheduleBuildError::Ambiguity) error.
///
/// Defaults to [`LogLevel::Ignore`].
pub ambiguity_detection: LogLevel,
/// Determines whether the presence of redundant edges in the hierarchy of system sets is only
/// logged or also results in a [`HierarchyRedundancy`](ScheduleBuildError::HierarchyRedundancy)
/// error.
///
/// Defaults to [`LogLevel::Warn`].
pub hierarchy_detection: LogLevel,
/// If set to true, node names will be shortened instead of the fully qualified type path.
///
/// Defaults to `true`.
pub use_shortnames: bool,
/// If set to true, report all system sets the conflicting systems are part of.
///
/// Defaults to `true`.
pub report_sets: bool,
}
impl Default for ScheduleBuildSettings {
fn default() -> Self {
Self::new()
}
}
impl ScheduleBuildSettings {
pub const fn new() -> Self {
Self {
ambiguity_detection: LogLevel::Ignore,
hierarchy_detection: LogLevel::Warn,
use_shortnames: true,
report_sets: true,
}
}
}