bevy/crates/bevy_pbr/src/material.rs
Patrick Walton 4dadebd9c4
Improve performance by binning together opaque items instead of sorting them. (#12453)
Today, we sort all entities added to all phases, even the phases that
don't strictly need sorting, such as the opaque and shadow phases. This
results in a performance loss because our `PhaseItem`s are rather large
in memory, so sorting is slow. Additionally, determining the boundaries
of batches is an O(n) process.

This commit makes Bevy instead applicable place phase items into *bins*
keyed by *bin keys*, which have the invariant that everything in the
same bin is potentially batchable. This makes determining batch
boundaries O(1), because everything in the same bin can be batched.
Instead of sorting each entity, we now sort only the bin keys. This
drops the sorting time to near-zero on workloads with few bins like
`many_cubes --no-frustum-culling`. Memory usage is improved too, with
batch boundaries and dynamic indices now implicit instead of explicit.
The improved memory usage results in a significant win even on
unbatchable workloads like `many_cubes --no-frustum-culling
--vary-material-data-per-instance`, presumably due to cache effects.

Not all phases can be binned; some, such as transparent and transmissive
phases, must still be sorted. To handle this, this commit splits
`PhaseItem` into `BinnedPhaseItem` and `SortedPhaseItem`. Most of the
logic that today deals with `PhaseItem`s has been moved to
`SortedPhaseItem`. `BinnedPhaseItem` has the new logic.

Frame time results (in ms/frame) are as follows:

| Benchmark                | `binning` | `main`  | Speedup |
| ------------------------ | --------- | ------- | ------- |
| `many_cubes -nfc -vpi` | 232.179     | 312.123   | 34.43%  |
| `many_cubes -nfc`        | 25.874 | 30.117 | 16.40%  |
| `many_foxes`             | 3.276 | 3.515 | 7.30%   |

(`-nfc` is short for `--no-frustum-culling`; `-vpi` is short for
`--vary-per-instance`.)

---

## Changelog

### Changed

* Render phases have been split into binned and sorted phases. Binned
phases, such as the common opaque phase, achieve improved CPU
performance by avoiding the sorting step.

## Migration Guide

- `PhaseItem` has been split into `BinnedPhaseItem` and
`SortedPhaseItem`. If your code has custom `PhaseItem`s, you will need
to migrate them to one of these two types. `SortedPhaseItem` requires
the fewest code changes, but you may want to pick `BinnedPhaseItem` if
your phase doesn't require sorting, as that enables higher performance.

## Tracy graphs

`many-cubes --no-frustum-culling`, `main` branch:
<img width="1064" alt="Screenshot 2024-03-12 180037"
src="https://github.com/bevyengine/bevy/assets/157897/e1180ce8-8e89-46d2-85e3-f59f72109a55">

`many-cubes --no-frustum-culling`, this branch:
<img width="1064" alt="Screenshot 2024-03-12 180011"
src="https://github.com/bevyengine/bevy/assets/157897/0899f036-6075-44c5-a972-44d95895f46c">

You can see that `batch_and_prepare_binned_render_phase` is a much
smaller fraction of the time. Zooming in on that function, with yellow
being this branch and red being `main`, we see:

<img width="1064" alt="Screenshot 2024-03-12 175832"
src="https://github.com/bevyengine/bevy/assets/157897/0dfc8d3f-49f4-496e-8825-a66e64d356d0">

The binning happens in `queue_material_meshes`. Again with yellow being
this branch and red being `main`:
<img width="1064" alt="Screenshot 2024-03-12 175755"
src="https://github.com/bevyengine/bevy/assets/157897/b9b20dc1-11c8-400c-a6cc-1c2e09c1bb96">

We can see that there is a small regression in `queue_material_meshes`
performance, but it's not nearly enough to outweigh the large gains in
`batch_and_prepare_binned_render_phase`.

---------

Co-authored-by: James Liu <contact@jamessliu.com>
2024-03-30 02:55:02 +00:00

1075 lines
40 KiB
Rust

#[cfg(feature = "meshlet")]
use crate::meshlet::{
prepare_material_meshlet_meshes_main_opaque_pass, queue_material_meshlet_meshes,
MeshletGpuScene,
};
use crate::*;
use bevy_asset::{Asset, AssetEvent, AssetId, AssetServer};
use bevy_core_pipeline::{
core_3d::{
AlphaMask3d, Camera3d, Opaque3d, Opaque3dBinKey, ScreenSpaceTransmissionQuality,
Transmissive3d, Transparent3d,
},
prepass::{
DeferredPrepass, DepthPrepass, MotionVectorPrepass, NormalPrepass, OpaqueNoLightmap3dBinKey,
},
tonemapping::{DebandDither, Tonemapping},
};
use bevy_derive::{Deref, DerefMut};
use bevy_ecs::{
prelude::*,
system::{lifetimeless::SRes, SystemParamItem},
};
use bevy_reflect::Reflect;
use bevy_render::{
camera::TemporalJitter,
extract_instances::{ExtractInstancesPlugin, ExtractedInstances},
extract_resource::ExtractResource,
mesh::{Mesh, MeshVertexBufferLayoutRef},
render_asset::RenderAssets,
render_phase::*,
render_resource::*,
renderer::RenderDevice,
texture::FallbackImage,
view::{ExtractedView, Msaa, VisibleEntities},
Extract,
};
use bevy_utils::{tracing::error, HashMap, HashSet};
use std::marker::PhantomData;
use std::sync::atomic::{AtomicU32, Ordering};
use std::{hash::Hash, num::NonZeroU32};
use self::{irradiance_volume::IrradianceVolume, prelude::EnvironmentMapLight};
/// Materials are used alongside [`MaterialPlugin`] and [`MaterialMeshBundle`]
/// to spawn entities that are rendered with a specific [`Material`] type. They serve as an easy to use high level
/// way to render [`Mesh`] entities with custom shader logic.
///
/// Materials must implement [`AsBindGroup`] to define how data will be transferred to the GPU and bound in shaders.
/// [`AsBindGroup`] can be derived, which makes generating bindings straightforward. See the [`AsBindGroup`] docs for details.
///
/// # Example
///
/// Here is a simple Material implementation. The [`AsBindGroup`] derive has many features. To see what else is available,
/// check out the [`AsBindGroup`] documentation.
/// ```
/// # use bevy_pbr::{Material, MaterialMeshBundle};
/// # use bevy_ecs::prelude::*;
/// # use bevy_reflect::TypePath;
/// # use bevy_render::{render_resource::{AsBindGroup, ShaderRef}, texture::Image};
/// # use bevy_color::LinearRgba;
/// # use bevy_color::palettes::basic::RED;
/// # use bevy_asset::{Handle, AssetServer, Assets, Asset};
///
/// #[derive(AsBindGroup, Debug, Clone, Asset, TypePath)]
/// pub struct CustomMaterial {
/// // Uniform bindings must implement `ShaderType`, which will be used to convert the value to
/// // its shader-compatible equivalent. Most core math types already implement `ShaderType`.
/// #[uniform(0)]
/// color: LinearRgba,
/// // Images can be bound as textures in shaders. If the Image's sampler is also needed, just
/// // add the sampler attribute with a different binding index.
/// #[texture(1)]
/// #[sampler(2)]
/// color_texture: Handle<Image>,
/// }
///
/// // All functions on `Material` have default impls. You only need to implement the
/// // functions that are relevant for your material.
/// impl Material for CustomMaterial {
/// fn fragment_shader() -> ShaderRef {
/// "shaders/custom_material.wgsl".into()
/// }
/// }
///
/// // Spawn an entity using `CustomMaterial`.
/// fn setup(mut commands: Commands, mut materials: ResMut<Assets<CustomMaterial>>, asset_server: Res<AssetServer>) {
/// commands.spawn(MaterialMeshBundle {
/// material: materials.add(CustomMaterial {
/// color: RED.into(),
/// color_texture: asset_server.load("some_image.png"),
/// }),
/// ..Default::default()
/// });
/// }
/// ```
/// In WGSL shaders, the material's binding would look like this:
///
/// ```wgsl
/// @group(2) @binding(0) var<uniform> color: vec4<f32>;
/// @group(2) @binding(1) var color_texture: texture_2d<f32>;
/// @group(2) @binding(2) var color_sampler: sampler;
/// ```
pub trait Material: Asset + AsBindGroup + Clone + Sized {
/// Returns this material's vertex shader. If [`ShaderRef::Default`] is returned, the default mesh vertex shader
/// will be used.
fn vertex_shader() -> ShaderRef {
ShaderRef::Default
}
/// Returns this material's fragment shader. If [`ShaderRef::Default`] is returned, the default mesh fragment shader
/// will be used.
#[allow(unused_variables)]
fn fragment_shader() -> ShaderRef {
ShaderRef::Default
}
/// Returns this material's [`AlphaMode`]. Defaults to [`AlphaMode::Opaque`].
#[inline]
fn alpha_mode(&self) -> AlphaMode {
AlphaMode::Opaque
}
/// Returns if this material should be rendered by the deferred or forward renderer.
/// for `AlphaMode::Opaque` or `AlphaMode::Mask` materials.
/// If `OpaqueRendererMethod::Auto`, it will default to what is selected in the `DefaultOpaqueRendererMethod` resource.
#[inline]
fn opaque_render_method(&self) -> OpaqueRendererMethod {
OpaqueRendererMethod::Forward
}
#[inline]
/// Add a bias to the view depth of the mesh which can be used to force a specific render order.
/// for meshes with similar depth, to avoid z-fighting.
/// The bias is in depth-texture units so large values may be needed to overcome small depth differences.
fn depth_bias(&self) -> f32 {
0.0
}
#[inline]
/// Returns whether the material would like to read from [`ViewTransmissionTexture`](bevy_core_pipeline::core_3d::ViewTransmissionTexture).
///
/// This allows taking color output from the [`Opaque3d`] pass as an input, (for screen-space transmission) but requires
/// rendering to take place in a separate [`Transmissive3d`] pass.
fn reads_view_transmission_texture(&self) -> bool {
false
}
/// Returns this material's prepass vertex shader. If [`ShaderRef::Default`] is returned, the default prepass vertex shader
/// will be used.
///
/// This is used for the various [prepasses](bevy_core_pipeline::prepass) as well as for generating the depth maps
/// required for shadow mapping.
fn prepass_vertex_shader() -> ShaderRef {
ShaderRef::Default
}
/// Returns this material's prepass fragment shader. If [`ShaderRef::Default`] is returned, the default prepass fragment shader
/// will be used.
///
/// This is used for the various [prepasses](bevy_core_pipeline::prepass) as well as for generating the depth maps
/// required for shadow mapping.
#[allow(unused_variables)]
fn prepass_fragment_shader() -> ShaderRef {
ShaderRef::Default
}
/// Returns this material's deferred vertex shader. If [`ShaderRef::Default`] is returned, the default deferred vertex shader
/// will be used.
fn deferred_vertex_shader() -> ShaderRef {
ShaderRef::Default
}
/// Returns this material's deferred fragment shader. If [`ShaderRef::Default`] is returned, the default deferred fragment shader
/// will be used.
#[allow(unused_variables)]
fn deferred_fragment_shader() -> ShaderRef {
ShaderRef::Default
}
/// Returns this material's [`crate::meshlet::MeshletMesh`] fragment shader. If [`ShaderRef::Default`] is returned,
/// the default meshlet mesh fragment shader will be used.
///
/// This is part of an experimental feature, and is unnecessary to implement unless you are using `MeshletMesh`'s.
#[allow(unused_variables)]
#[cfg(feature = "meshlet")]
fn meshlet_mesh_fragment_shader() -> ShaderRef {
ShaderRef::Default
}
/// Returns this material's [`crate::meshlet::MeshletMesh`] prepass fragment shader. If [`ShaderRef::Default`] is returned,
/// the default meshlet mesh prepass fragment shader will be used.
///
/// This is part of an experimental feature, and is unnecessary to implement unless you are using `MeshletMesh`'s.
#[allow(unused_variables)]
#[cfg(feature = "meshlet")]
fn meshlet_mesh_prepass_fragment_shader() -> ShaderRef {
ShaderRef::Default
}
/// Returns this material's [`crate::meshlet::MeshletMesh`] deferred fragment shader. If [`ShaderRef::Default`] is returned,
/// the default meshlet mesh deferred fragment shader will be used.
///
/// This is part of an experimental feature, and is unnecessary to implement unless you are using `MeshletMesh`'s.
#[allow(unused_variables)]
#[cfg(feature = "meshlet")]
fn meshlet_mesh_deferred_fragment_shader() -> ShaderRef {
ShaderRef::Default
}
/// Customizes the default [`RenderPipelineDescriptor`] for a specific entity using the entity's
/// [`MaterialPipelineKey`] and [`MeshVertexBufferLayoutRef`] as input.
#[allow(unused_variables)]
#[inline]
fn specialize(
pipeline: &MaterialPipeline<Self>,
descriptor: &mut RenderPipelineDescriptor,
layout: &MeshVertexBufferLayoutRef,
key: MaterialPipelineKey<Self>,
) -> Result<(), SpecializedMeshPipelineError> {
Ok(())
}
}
/// Adds the necessary ECS resources and render logic to enable rendering entities using the given [`Material`]
/// asset type.
pub struct MaterialPlugin<M: Material> {
/// Controls if the prepass is enabled for the Material.
/// For more information about what a prepass is, see the [`bevy_core_pipeline::prepass`] docs.
///
/// When it is enabled, it will automatically add the [`PrepassPlugin`]
/// required to make the prepass work on this Material.
pub prepass_enabled: bool,
/// Controls if shadows are enabled for the Material.
pub shadows_enabled: bool,
pub _marker: PhantomData<M>,
}
impl<M: Material> Default for MaterialPlugin<M> {
fn default() -> Self {
Self {
prepass_enabled: true,
shadows_enabled: true,
_marker: Default::default(),
}
}
}
impl<M: Material> Plugin for MaterialPlugin<M>
where
M::Data: PartialEq + Eq + Hash + Clone,
{
fn build(&self, app: &mut App) {
app.init_asset::<M>()
.add_plugins(ExtractInstancesPlugin::<AssetId<M>>::extract_visible());
if let Ok(render_app) = app.get_sub_app_mut(RenderApp) {
render_app
.init_resource::<DrawFunctions<Shadow>>()
.add_render_command::<Shadow, DrawPrepass<M>>()
.add_render_command::<Transmissive3d, DrawMaterial<M>>()
.add_render_command::<Transparent3d, DrawMaterial<M>>()
.add_render_command::<Opaque3d, DrawMaterial<M>>()
.add_render_command::<AlphaMask3d, DrawMaterial<M>>()
.init_resource::<ExtractedMaterials<M>>()
.init_resource::<RenderMaterials<M>>()
.init_resource::<SpecializedMeshPipelines<MaterialPipeline<M>>>()
.add_systems(ExtractSchedule, extract_materials::<M>)
.add_systems(
Render,
(
prepare_materials::<M>
.in_set(RenderSet::PrepareAssets)
.after(prepare_assets::<Image>),
queue_material_meshes::<M>
.in_set(RenderSet::QueueMeshes)
.after(prepare_materials::<M>),
),
);
if self.shadows_enabled {
render_app.add_systems(
Render,
(queue_shadows::<M>
.in_set(RenderSet::QueueMeshes)
.after(prepare_materials::<M>),),
);
}
#[cfg(feature = "meshlet")]
render_app.add_systems(
Render,
(
prepare_material_meshlet_meshes_main_opaque_pass::<M>,
queue_material_meshlet_meshes::<M>,
)
.chain()
.in_set(RenderSet::Queue)
.run_if(resource_exists::<MeshletGpuScene>),
);
}
if self.shadows_enabled || self.prepass_enabled {
// PrepassPipelinePlugin is required for shadow mapping and the optional PrepassPlugin
app.add_plugins(PrepassPipelinePlugin::<M>::default());
}
if self.prepass_enabled {
app.add_plugins(PrepassPlugin::<M>::default());
}
}
fn finish(&self, app: &mut App) {
if let Ok(render_app) = app.get_sub_app_mut(RenderApp) {
render_app.init_resource::<MaterialPipeline<M>>();
}
}
}
/// A key uniquely identifying a specialized [`MaterialPipeline`].
pub struct MaterialPipelineKey<M: Material> {
pub mesh_key: MeshPipelineKey,
pub bind_group_data: M::Data,
}
impl<M: Material> Eq for MaterialPipelineKey<M> where M::Data: PartialEq {}
impl<M: Material> PartialEq for MaterialPipelineKey<M>
where
M::Data: PartialEq,
{
fn eq(&self, other: &Self) -> bool {
self.mesh_key == other.mesh_key && self.bind_group_data == other.bind_group_data
}
}
impl<M: Material> Clone for MaterialPipelineKey<M>
where
M::Data: Clone,
{
fn clone(&self) -> Self {
Self {
mesh_key: self.mesh_key,
bind_group_data: self.bind_group_data.clone(),
}
}
}
impl<M: Material> Hash for MaterialPipelineKey<M>
where
M::Data: Hash,
{
fn hash<H: std::hash::Hasher>(&self, state: &mut H) {
self.mesh_key.hash(state);
self.bind_group_data.hash(state);
}
}
/// Render pipeline data for a given [`Material`].
#[derive(Resource)]
pub struct MaterialPipeline<M: Material> {
pub mesh_pipeline: MeshPipeline,
pub material_layout: BindGroupLayout,
pub vertex_shader: Option<Handle<Shader>>,
pub fragment_shader: Option<Handle<Shader>>,
pub marker: PhantomData<M>,
}
impl<M: Material> Clone for MaterialPipeline<M> {
fn clone(&self) -> Self {
Self {
mesh_pipeline: self.mesh_pipeline.clone(),
material_layout: self.material_layout.clone(),
vertex_shader: self.vertex_shader.clone(),
fragment_shader: self.fragment_shader.clone(),
marker: PhantomData,
}
}
}
impl<M: Material> SpecializedMeshPipeline for MaterialPipeline<M>
where
M::Data: PartialEq + Eq + Hash + Clone,
{
type Key = MaterialPipelineKey<M>;
fn specialize(
&self,
key: Self::Key,
layout: &MeshVertexBufferLayoutRef,
) -> Result<RenderPipelineDescriptor, SpecializedMeshPipelineError> {
let mut descriptor = self.mesh_pipeline.specialize(key.mesh_key, layout)?;
if let Some(vertex_shader) = &self.vertex_shader {
descriptor.vertex.shader = vertex_shader.clone();
}
if let Some(fragment_shader) = &self.fragment_shader {
descriptor.fragment.as_mut().unwrap().shader = fragment_shader.clone();
}
descriptor.layout.insert(2, self.material_layout.clone());
M::specialize(self, &mut descriptor, layout, key)?;
Ok(descriptor)
}
}
impl<M: Material> FromWorld for MaterialPipeline<M> {
fn from_world(world: &mut World) -> Self {
let asset_server = world.resource::<AssetServer>();
let render_device = world.resource::<RenderDevice>();
MaterialPipeline {
mesh_pipeline: world.resource::<MeshPipeline>().clone(),
material_layout: M::bind_group_layout(render_device),
vertex_shader: match M::vertex_shader() {
ShaderRef::Default => None,
ShaderRef::Handle(handle) => Some(handle),
ShaderRef::Path(path) => Some(asset_server.load(path)),
},
fragment_shader: match M::fragment_shader() {
ShaderRef::Default => None,
ShaderRef::Handle(handle) => Some(handle),
ShaderRef::Path(path) => Some(asset_server.load(path)),
},
marker: PhantomData,
}
}
}
type DrawMaterial<M> = (
SetItemPipeline,
SetMeshViewBindGroup<0>,
SetMeshBindGroup<1>,
SetMaterialBindGroup<M, 2>,
DrawMesh,
);
/// Sets the bind group for a given [`Material`] at the configured `I` index.
pub struct SetMaterialBindGroup<M: Material, const I: usize>(PhantomData<M>);
impl<P: PhaseItem, M: Material, const I: usize> RenderCommand<P> for SetMaterialBindGroup<M, I> {
type Param = (SRes<RenderMaterials<M>>, SRes<RenderMaterialInstances<M>>);
type ViewQuery = ();
type ItemQuery = ();
#[inline]
fn render<'w>(
item: &P,
_view: (),
_item_query: Option<()>,
(materials, material_instances): SystemParamItem<'w, '_, Self::Param>,
pass: &mut TrackedRenderPass<'w>,
) -> RenderCommandResult {
let materials = materials.into_inner();
let material_instances = material_instances.into_inner();
let Some(material_asset_id) = material_instances.get(&item.entity()) else {
return RenderCommandResult::Failure;
};
let Some(material) = materials.get(material_asset_id) else {
return RenderCommandResult::Failure;
};
pass.set_bind_group(I, &material.bind_group, &[]);
RenderCommandResult::Success
}
}
pub type RenderMaterialInstances<M> = ExtractedInstances<AssetId<M>>;
pub const fn alpha_mode_pipeline_key(alpha_mode: AlphaMode) -> MeshPipelineKey {
match alpha_mode {
// Premultiplied and Add share the same pipeline key
// They're made distinct in the PBR shader, via `premultiply_alpha()`
AlphaMode::Premultiplied | AlphaMode::Add => MeshPipelineKey::BLEND_PREMULTIPLIED_ALPHA,
AlphaMode::Blend => MeshPipelineKey::BLEND_ALPHA,
AlphaMode::Multiply => MeshPipelineKey::BLEND_MULTIPLY,
AlphaMode::Mask(_) => MeshPipelineKey::MAY_DISCARD,
_ => MeshPipelineKey::NONE,
}
}
pub const fn tonemapping_pipeline_key(tonemapping: Tonemapping) -> MeshPipelineKey {
match tonemapping {
Tonemapping::None => MeshPipelineKey::TONEMAP_METHOD_NONE,
Tonemapping::Reinhard => MeshPipelineKey::TONEMAP_METHOD_REINHARD,
Tonemapping::ReinhardLuminance => MeshPipelineKey::TONEMAP_METHOD_REINHARD_LUMINANCE,
Tonemapping::AcesFitted => MeshPipelineKey::TONEMAP_METHOD_ACES_FITTED,
Tonemapping::AgX => MeshPipelineKey::TONEMAP_METHOD_AGX,
Tonemapping::SomewhatBoringDisplayTransform => {
MeshPipelineKey::TONEMAP_METHOD_SOMEWHAT_BORING_DISPLAY_TRANSFORM
}
Tonemapping::TonyMcMapface => MeshPipelineKey::TONEMAP_METHOD_TONY_MC_MAPFACE,
Tonemapping::BlenderFilmic => MeshPipelineKey::TONEMAP_METHOD_BLENDER_FILMIC,
}
}
pub const fn screen_space_specular_transmission_pipeline_key(
screen_space_transmissive_blur_quality: ScreenSpaceTransmissionQuality,
) -> MeshPipelineKey {
match screen_space_transmissive_blur_quality {
ScreenSpaceTransmissionQuality::Low => {
MeshPipelineKey::SCREEN_SPACE_SPECULAR_TRANSMISSION_LOW
}
ScreenSpaceTransmissionQuality::Medium => {
MeshPipelineKey::SCREEN_SPACE_SPECULAR_TRANSMISSION_MEDIUM
}
ScreenSpaceTransmissionQuality::High => {
MeshPipelineKey::SCREEN_SPACE_SPECULAR_TRANSMISSION_HIGH
}
ScreenSpaceTransmissionQuality::Ultra => {
MeshPipelineKey::SCREEN_SPACE_SPECULAR_TRANSMISSION_ULTRA
}
}
}
#[allow(clippy::too_many_arguments)]
pub fn queue_material_meshes<M: Material>(
opaque_draw_functions: Res<DrawFunctions<Opaque3d>>,
alpha_mask_draw_functions: Res<DrawFunctions<AlphaMask3d>>,
transmissive_draw_functions: Res<DrawFunctions<Transmissive3d>>,
transparent_draw_functions: Res<DrawFunctions<Transparent3d>>,
material_pipeline: Res<MaterialPipeline<M>>,
mut pipelines: ResMut<SpecializedMeshPipelines<MaterialPipeline<M>>>,
pipeline_cache: Res<PipelineCache>,
msaa: Res<Msaa>,
render_meshes: Res<RenderAssets<Mesh>>,
render_materials: Res<RenderMaterials<M>>,
render_mesh_instances: Res<RenderMeshInstances>,
render_material_instances: Res<RenderMaterialInstances<M>>,
render_lightmaps: Res<RenderLightmaps>,
mut views: Query<(
&ExtractedView,
&VisibleEntities,
Option<&Tonemapping>,
Option<&DebandDither>,
Option<&ShadowFilteringMethod>,
Has<ScreenSpaceAmbientOcclusionSettings>,
(
Has<NormalPrepass>,
Has<DepthPrepass>,
Has<MotionVectorPrepass>,
Has<DeferredPrepass>,
),
Option<&Camera3d>,
Has<TemporalJitter>,
Option<&Projection>,
&mut BinnedRenderPhase<Opaque3d>,
&mut BinnedRenderPhase<AlphaMask3d>,
&mut SortedRenderPhase<Transmissive3d>,
&mut SortedRenderPhase<Transparent3d>,
(
Has<RenderViewLightProbes<EnvironmentMapLight>>,
Has<RenderViewLightProbes<IrradianceVolume>>,
),
)>,
) where
M::Data: PartialEq + Eq + Hash + Clone,
{
for (
view,
visible_entities,
tonemapping,
dither,
shadow_filter_method,
ssao,
(normal_prepass, depth_prepass, motion_vector_prepass, deferred_prepass),
camera_3d,
temporal_jitter,
projection,
mut opaque_phase,
mut alpha_mask_phase,
mut transmissive_phase,
mut transparent_phase,
(has_environment_maps, has_irradiance_volumes),
) in &mut views
{
let draw_opaque_pbr = opaque_draw_functions.read().id::<DrawMaterial<M>>();
let draw_alpha_mask_pbr = alpha_mask_draw_functions.read().id::<DrawMaterial<M>>();
let draw_transmissive_pbr = transmissive_draw_functions.read().id::<DrawMaterial<M>>();
let draw_transparent_pbr = transparent_draw_functions.read().id::<DrawMaterial<M>>();
let mut view_key = MeshPipelineKey::from_msaa_samples(msaa.samples())
| MeshPipelineKey::from_hdr(view.hdr);
if normal_prepass {
view_key |= MeshPipelineKey::NORMAL_PREPASS;
}
if depth_prepass {
view_key |= MeshPipelineKey::DEPTH_PREPASS;
}
if motion_vector_prepass {
view_key |= MeshPipelineKey::MOTION_VECTOR_PREPASS;
}
if deferred_prepass {
view_key |= MeshPipelineKey::DEFERRED_PREPASS;
}
if temporal_jitter {
view_key |= MeshPipelineKey::TEMPORAL_JITTER;
}
if has_environment_maps {
view_key |= MeshPipelineKey::ENVIRONMENT_MAP;
}
if has_irradiance_volumes {
view_key |= MeshPipelineKey::IRRADIANCE_VOLUME;
}
if let Some(projection) = projection {
view_key |= match projection {
Projection::Perspective(_) => MeshPipelineKey::VIEW_PROJECTION_PERSPECTIVE,
Projection::Orthographic(_) => MeshPipelineKey::VIEW_PROJECTION_ORTHOGRAPHIC,
};
}
match shadow_filter_method.unwrap_or(&ShadowFilteringMethod::default()) {
ShadowFilteringMethod::Hardware2x2 => {
view_key |= MeshPipelineKey::SHADOW_FILTER_METHOD_HARDWARE_2X2;
}
ShadowFilteringMethod::Castano13 => {
view_key |= MeshPipelineKey::SHADOW_FILTER_METHOD_CASTANO_13;
}
ShadowFilteringMethod::Jimenez14 => {
view_key |= MeshPipelineKey::SHADOW_FILTER_METHOD_JIMENEZ_14;
}
}
if !view.hdr {
if let Some(tonemapping) = tonemapping {
view_key |= MeshPipelineKey::TONEMAP_IN_SHADER;
view_key |= tonemapping_pipeline_key(*tonemapping);
}
if let Some(DebandDither::Enabled) = dither {
view_key |= MeshPipelineKey::DEBAND_DITHER;
}
}
if ssao {
view_key |= MeshPipelineKey::SCREEN_SPACE_AMBIENT_OCCLUSION;
}
if let Some(camera_3d) = camera_3d {
view_key |= screen_space_specular_transmission_pipeline_key(
camera_3d.screen_space_specular_transmission_quality,
);
}
let rangefinder = view.rangefinder3d();
for visible_entity in &visible_entities.entities {
let Some(material_asset_id) = render_material_instances.get(visible_entity) else {
continue;
};
let Some(mesh_instance) = render_mesh_instances.get(visible_entity) else {
continue;
};
let Some(mesh) = render_meshes.get(mesh_instance.mesh_asset_id) else {
continue;
};
let Some(material) = render_materials.get(material_asset_id) else {
continue;
};
let forward = match material.properties.render_method {
OpaqueRendererMethod::Forward => true,
OpaqueRendererMethod::Deferred => false,
OpaqueRendererMethod::Auto => unreachable!(),
};
let mut mesh_key = view_key;
mesh_key |= MeshPipelineKey::from_primitive_topology(mesh.primitive_topology);
if mesh.morph_targets.is_some() {
mesh_key |= MeshPipelineKey::MORPH_TARGETS;
}
if material.properties.reads_view_transmission_texture {
mesh_key |= MeshPipelineKey::READS_VIEW_TRANSMISSION_TEXTURE;
}
mesh_key |= alpha_mode_pipeline_key(material.properties.alpha_mode);
let lightmap_image = render_lightmaps
.render_lightmaps
.get(visible_entity)
.map(|lightmap| lightmap.image);
if lightmap_image.is_some() {
mesh_key |= MeshPipelineKey::LIGHTMAPPED;
}
let pipeline_id = pipelines.specialize(
&pipeline_cache,
&material_pipeline,
MaterialPipelineKey {
mesh_key,
bind_group_data: material.key.clone(),
},
&mesh.layout,
);
let pipeline_id = match pipeline_id {
Ok(id) => id,
Err(err) => {
error!("{}", err);
continue;
}
};
mesh_instance
.material_bind_group_id
.set(material.get_bind_group_id());
match material.properties.alpha_mode {
AlphaMode::Opaque => {
if material.properties.reads_view_transmission_texture {
let distance = rangefinder
.distance_translation(&mesh_instance.transforms.transform.translation)
+ material.properties.depth_bias;
transmissive_phase.add(Transmissive3d {
entity: *visible_entity,
draw_function: draw_transmissive_pbr,
pipeline: pipeline_id,
distance,
batch_range: 0..1,
dynamic_offset: None,
});
} else if forward {
let bin_key = Opaque3dBinKey {
draw_function: draw_opaque_pbr,
pipeline: pipeline_id,
asset_id: mesh_instance.mesh_asset_id,
material_bind_group_id: material.get_bind_group_id().0,
lightmap_image,
};
opaque_phase.add(bin_key, *visible_entity, mesh_instance.should_batch());
}
}
AlphaMode::Mask(_) => {
if material.properties.reads_view_transmission_texture {
let distance = rangefinder
.distance_translation(&mesh_instance.transforms.transform.translation)
+ material.properties.depth_bias;
transmissive_phase.add(Transmissive3d {
entity: *visible_entity,
draw_function: draw_transmissive_pbr,
pipeline: pipeline_id,
distance,
batch_range: 0..1,
dynamic_offset: None,
});
} else if forward {
let bin_key = OpaqueNoLightmap3dBinKey {
draw_function: draw_alpha_mask_pbr,
pipeline: pipeline_id,
asset_id: mesh_instance.mesh_asset_id,
material_bind_group_id: material.get_bind_group_id().0,
};
alpha_mask_phase.add(
bin_key,
*visible_entity,
mesh_instance.should_batch(),
);
}
}
AlphaMode::Blend
| AlphaMode::Premultiplied
| AlphaMode::Add
| AlphaMode::Multiply => {
let distance = rangefinder
.distance_translation(&mesh_instance.transforms.transform.translation)
+ material.properties.depth_bias;
transparent_phase.add(Transparent3d {
entity: *visible_entity,
draw_function: draw_transparent_pbr,
pipeline: pipeline_id,
distance,
batch_range: 0..1,
dynamic_offset: None,
});
}
}
}
}
}
/// Default render method used for opaque materials.
#[derive(Default, Resource, Clone, Debug, ExtractResource, Reflect)]
pub struct DefaultOpaqueRendererMethod(OpaqueRendererMethod);
impl DefaultOpaqueRendererMethod {
pub fn forward() -> Self {
DefaultOpaqueRendererMethod(OpaqueRendererMethod::Forward)
}
pub fn deferred() -> Self {
DefaultOpaqueRendererMethod(OpaqueRendererMethod::Deferred)
}
pub fn set_to_forward(&mut self) {
self.0 = OpaqueRendererMethod::Forward;
}
pub fn set_to_deferred(&mut self) {
self.0 = OpaqueRendererMethod::Deferred;
}
}
/// Render method used for opaque materials.
///
/// The forward rendering main pass draws each mesh entity and shades it according to its
/// corresponding material and the lights that affect it. Some render features like Screen Space
/// Ambient Occlusion require running depth and normal prepasses, that are 'deferred'-like
/// prepasses over all mesh entities to populate depth and normal textures. This means that when
/// using render features that require running prepasses, multiple passes over all visible geometry
/// are required. This can be slow if there is a lot of geometry that cannot be batched into few
/// draws.
///
/// Deferred rendering runs a prepass to gather not only geometric information like depth and
/// normals, but also all the material properties like base color, emissive color, reflectance,
/// metalness, etc, and writes them into a deferred 'g-buffer' texture. The deferred main pass is
/// then a fullscreen pass that reads data from these textures and executes shading. This allows
/// for one pass over geometry, but is at the cost of not being able to use MSAA, and has heavier
/// bandwidth usage which can be unsuitable for low end mobile or other bandwidth-constrained devices.
///
/// If a material indicates `OpaqueRendererMethod::Auto`, `DefaultOpaqueRendererMethod` will be used.
#[derive(Default, Clone, Copy, Debug, Reflect)]
pub enum OpaqueRendererMethod {
#[default]
Forward,
Deferred,
Auto,
}
/// Common [`Material`] properties, calculated for a specific material instance.
pub struct MaterialProperties {
/// Is this material should be rendered by the deferred renderer when.
/// AlphaMode::Opaque or AlphaMode::Mask
pub render_method: OpaqueRendererMethod,
/// The [`AlphaMode`] of this material.
pub alpha_mode: AlphaMode,
/// Add a bias to the view depth of the mesh which can be used to force a specific render order
/// for meshes with equal depth, to avoid z-fighting.
/// The bias is in depth-texture units so large values may be needed to overcome small depth differences.
pub depth_bias: f32,
/// Whether the material would like to read from [`ViewTransmissionTexture`](bevy_core_pipeline::core_3d::ViewTransmissionTexture).
///
/// This allows taking color output from the [`Opaque3d`] pass as an input, (for screen-space transmission) but requires
/// rendering to take place in a separate [`Transmissive3d`] pass.
pub reads_view_transmission_texture: bool,
}
/// Data prepared for a [`Material`] instance.
pub struct PreparedMaterial<T: Material> {
pub bindings: Vec<(u32, OwnedBindingResource)>,
pub bind_group: BindGroup,
pub key: T::Data,
pub properties: MaterialProperties,
}
#[derive(Component, Clone, Copy, Default, PartialEq, Eq, Deref, DerefMut)]
pub struct MaterialBindGroupId(pub Option<BindGroupId>);
impl MaterialBindGroupId {
pub fn new(id: BindGroupId) -> Self {
Self(Some(id))
}
}
impl From<BindGroup> for MaterialBindGroupId {
fn from(value: BindGroup) -> Self {
Self::new(value.id())
}
}
/// An atomic version of [`MaterialBindGroupId`] that can be read from and written to
/// safely from multiple threads.
#[derive(Default)]
pub struct AtomicMaterialBindGroupId(AtomicU32);
impl AtomicMaterialBindGroupId {
/// Stores a value atomically. Uses [`Ordering::Relaxed`] so there is zero guarantee of ordering
/// relative to other operations.
///
/// See also: [`AtomicU32::store`].
pub fn set(&self, id: MaterialBindGroupId) {
let id = if let Some(id) = id.0 {
NonZeroU32::from(id).get()
} else {
0
};
self.0.store(id, Ordering::Relaxed);
}
/// Loads a value atomically. Uses [`Ordering::Relaxed`] so there is zero guarantee of ordering
/// relative to other operations.
///
/// See also: [`AtomicU32::load`].
pub fn get(&self) -> MaterialBindGroupId {
MaterialBindGroupId(NonZeroU32::new(self.0.load(Ordering::Relaxed)).map(BindGroupId::from))
}
}
impl<T: Material> PreparedMaterial<T> {
pub fn get_bind_group_id(&self) -> MaterialBindGroupId {
MaterialBindGroupId(Some(self.bind_group.id()))
}
}
#[derive(Resource)]
pub struct ExtractedMaterials<M: Material> {
extracted: Vec<(AssetId<M>, M)>,
removed: Vec<AssetId<M>>,
}
impl<M: Material> Default for ExtractedMaterials<M> {
fn default() -> Self {
Self {
extracted: Default::default(),
removed: Default::default(),
}
}
}
/// Stores all prepared representations of [`Material`] assets for as long as they exist.
#[derive(Resource, Deref, DerefMut)]
pub struct RenderMaterials<T: Material>(pub HashMap<AssetId<T>, PreparedMaterial<T>>);
impl<T: Material> Default for RenderMaterials<T> {
fn default() -> Self {
Self(Default::default())
}
}
/// This system extracts all created or modified assets of the corresponding [`Material`] type
/// into the "render world".
pub fn extract_materials<M: Material>(
mut commands: Commands,
mut events: Extract<EventReader<AssetEvent<M>>>,
assets: Extract<Res<Assets<M>>>,
) {
let mut changed_assets = HashSet::default();
let mut removed = Vec::new();
for event in events.read() {
#[allow(clippy::match_same_arms)]
match event {
AssetEvent::Added { id } | AssetEvent::Modified { id } => {
changed_assets.insert(*id);
}
AssetEvent::Removed { id } => {
changed_assets.remove(id);
removed.push(*id);
}
AssetEvent::Unused { .. } => {}
AssetEvent::LoadedWithDependencies { .. } => {
// TODO: handle this
}
}
}
let mut extracted_assets = Vec::new();
for id in changed_assets.drain() {
if let Some(asset) = assets.get(id) {
extracted_assets.push((id, asset.clone()));
}
}
commands.insert_resource(ExtractedMaterials {
extracted: extracted_assets,
removed,
});
}
/// All [`Material`] values of a given type that should be prepared next frame.
pub struct PrepareNextFrameMaterials<M: Material> {
assets: Vec<(AssetId<M>, M)>,
}
impl<M: Material> Default for PrepareNextFrameMaterials<M> {
fn default() -> Self {
Self {
assets: Default::default(),
}
}
}
/// This system prepares all assets of the corresponding [`Material`] type
/// which where extracted this frame for the GPU.
#[allow(clippy::too_many_arguments)]
pub fn prepare_materials<M: Material>(
mut prepare_next_frame: Local<PrepareNextFrameMaterials<M>>,
mut extracted_assets: ResMut<ExtractedMaterials<M>>,
mut render_materials: ResMut<RenderMaterials<M>>,
render_device: Res<RenderDevice>,
images: Res<RenderAssets<Image>>,
fallback_image: Res<FallbackImage>,
pipeline: Res<MaterialPipeline<M>>,
default_opaque_render_method: Res<DefaultOpaqueRendererMethod>,
) {
let queued_assets = std::mem::take(&mut prepare_next_frame.assets);
for (id, material) in queued_assets.into_iter() {
if extracted_assets.removed.contains(&id) {
continue;
}
match prepare_material(
&material,
&render_device,
&images,
&fallback_image,
&pipeline,
default_opaque_render_method.0,
) {
Ok(prepared_asset) => {
render_materials.insert(id, prepared_asset);
}
Err(AsBindGroupError::RetryNextUpdate) => {
prepare_next_frame.assets.push((id, material));
}
}
}
for removed in std::mem::take(&mut extracted_assets.removed) {
render_materials.remove(&removed);
}
for (id, material) in std::mem::take(&mut extracted_assets.extracted) {
match prepare_material(
&material,
&render_device,
&images,
&fallback_image,
&pipeline,
default_opaque_render_method.0,
) {
Ok(prepared_asset) => {
render_materials.insert(id, prepared_asset);
}
Err(AsBindGroupError::RetryNextUpdate) => {
prepare_next_frame.assets.push((id, material));
}
}
}
}
fn prepare_material<M: Material>(
material: &M,
render_device: &RenderDevice,
images: &RenderAssets<Image>,
fallback_image: &FallbackImage,
pipeline: &MaterialPipeline<M>,
default_opaque_render_method: OpaqueRendererMethod,
) -> Result<PreparedMaterial<M>, AsBindGroupError> {
let prepared = material.as_bind_group(
&pipeline.material_layout,
render_device,
images,
fallback_image,
)?;
let method = match material.opaque_render_method() {
OpaqueRendererMethod::Forward => OpaqueRendererMethod::Forward,
OpaqueRendererMethod::Deferred => OpaqueRendererMethod::Deferred,
OpaqueRendererMethod::Auto => default_opaque_render_method,
};
Ok(PreparedMaterial {
bindings: prepared.bindings,
bind_group: prepared.bind_group,
key: prepared.data,
properties: MaterialProperties {
alpha_mode: material.alpha_mode(),
depth_bias: material.depth_bias(),
reads_view_transmission_texture: material.reads_view_transmission_texture(),
render_method: method,
},
})
}