4c15dd0fc5
# Objective Bevy could benefit from *irradiance volumes*, also known as *voxel global illumination* or simply as light probes (though this term is not preferred, as multiple techniques can be called light probes). Irradiance volumes are a form of baked global illumination; they work by sampling the light at the centers of each voxel within a cuboid. At runtime, the voxels surrounding the fragment center are sampled and interpolated to produce indirect diffuse illumination. ## Solution This is divided into two sections. The first is copied and pasted from the irradiance volume module documentation and describes the technique. The second part consists of notes on the implementation. ### Overview An *irradiance volume* is a cuboid voxel region consisting of regularly-spaced precomputed samples of diffuse indirect light. They're ideal if you have a dynamic object such as a character that can move about static non-moving geometry such as a level in a game, and you want that dynamic object to be affected by the light bouncing off that static geometry. To use irradiance volumes, you need to precompute, or *bake*, the indirect light in your scene. Bevy doesn't currently come with a way to do this. Fortunately, [Blender] provides a [baking tool] as part of the Eevee renderer, and its irradiance volumes are compatible with those used by Bevy. The [`bevy-baked-gi`] project provides a tool, `export-blender-gi`, that can extract the baked irradiance volumes from the Blender `.blend` file and package them up into a `.ktx2` texture for use by the engine. See the documentation in the `bevy-baked-gi` project for more details as to this workflow. Like all light probes in Bevy, irradiance volumes are 1×1×1 cubes that can be arbitrarily scaled, rotated, and positioned in a scene with the [`bevy_transform::components::Transform`] component. The 3D voxel grid will be stretched to fill the interior of the cube, and the illumination from the irradiance volume will apply to all fragments within that bounding region. Bevy's irradiance volumes are based on Valve's [*ambient cubes*] as used in *Half-Life 2* ([Mitchell 2006], slide 27). These encode a single color of light from the six 3D cardinal directions and blend the sides together according to the surface normal. The primary reason for choosing ambient cubes is to match Blender, so that its Eevee renderer can be used for baking. However, they also have some advantages over the common second-order spherical harmonics approach: ambient cubes don't suffer from ringing artifacts, they are smaller (6 colors for ambient cubes as opposed to 9 for spherical harmonics), and evaluation is faster. A smaller basis allows for a denser grid of voxels with the same storage requirements. If you wish to use a tool other than `export-blender-gi` to produce the irradiance volumes, you'll need to pack the irradiance volumes in the following format. The irradiance volume of resolution *(Rx, Ry, Rz)* is expected to be a 3D texture of dimensions *(Rx, 2Ry, 3Rz)*. The unnormalized texture coordinate *(s, t, p)* of the voxel at coordinate *(x, y, z)* with side *S* ∈ *{-X, +X, -Y, +Y, -Z, +Z}* is as follows: ```text s = x t = y + ⎰ 0 if S ∈ {-X, -Y, -Z} ⎱ Ry if S ∈ {+X, +Y, +Z} ⎧ 0 if S ∈ {-X, +X} p = z + ⎨ Rz if S ∈ {-Y, +Y} ⎩ 2Rz if S ∈ {-Z, +Z} ``` Visually, in a left-handed coordinate system with Y up, viewed from the right, the 3D texture looks like a stacked series of voxel grids, one for each cube side, in this order: | **+X** | **+Y** | **+Z** | | ------ | ------ | ------ | | **-X** | **-Y** | **-Z** | A terminology note: Other engines may refer to irradiance volumes as *voxel global illumination*, *VXGI*, or simply as *light probes*. Sometimes *light probe* refers to what Bevy calls a reflection probe. In Bevy, *light probe* is a generic term that encompasses all cuboid bounding regions that capture indirect illumination, whether based on voxels or not. Note that, if binding arrays aren't supported (e.g. on WebGPU or WebGL 2), then only the closest irradiance volume to the view will be taken into account during rendering. [*ambient cubes*]: https://advances.realtimerendering.com/s2006/Mitchell-ShadingInValvesSourceEngine.pdf [Mitchell 2006]: https://advances.realtimerendering.com/s2006/Mitchell-ShadingInValvesSourceEngine.pdf [Blender]: http://blender.org/ [baking tool]: https://docs.blender.org/manual/en/latest/render/eevee/render_settings/indirect_lighting.html [`bevy-baked-gi`]: https://github.com/pcwalton/bevy-baked-gi ### Implementation notes This patch generalizes light probes so as to reuse as much code as possible between irradiance volumes and the existing reflection probes. This approach was chosen because both techniques share numerous similarities: 1. Both irradiance volumes and reflection probes are cuboid bounding regions. 2. Both are responsible for providing baked indirect light. 3. Both techniques involve presenting a variable number of textures to the shader from which indirect light is sampled. (In the current implementation, this uses binding arrays.) 4. Both irradiance volumes and reflection probes require gathering and sorting probes by distance on CPU. 5. Both techniques require the GPU to search through a list of bounding regions. 6. Both will eventually want to have falloff so that we can smoothly blend as objects enter and exit the probes' influence ranges. (This is not implemented yet to keep this patch relatively small and reviewable.) To do this, we generalize most of the methods in the reflection probes patch #11366 to be generic over a trait, `LightProbeComponent`. This trait is implemented by both `EnvironmentMapLight` (for reflection probes) and `IrradianceVolume` (for irradiance volumes). Using a trait will allow us to add more types of light probes in the future. In particular, I highly suspect we will want real-time reflection planes for mirrors in the future, which can be easily slotted into this framework. ## Changelog > This section is optional. If this was a trivial fix, or has no externally-visible impact, you can delete this section. ### Added * A new `IrradianceVolume` asset type is available for baked voxelized light probes. You can bake the global illumination using Blender or another tool of your choice and use it in Bevy to apply indirect illumination to dynamic objects. |
||
---|---|---|
.cargo | ||
.github | ||
assets | ||
benches | ||
crates | ||
docs | ||
docs-template | ||
errors | ||
examples | ||
src | ||
tests | ||
tools | ||
.gitattributes | ||
.gitignore | ||
Cargo.toml | ||
CHANGELOG.md | ||
clippy.toml | ||
CODE_OF_CONDUCT.md | ||
CONTRIBUTING.md | ||
CREDITS.md | ||
deny.toml | ||
LICENSE-APACHE | ||
LICENSE-MIT | ||
README.md | ||
rustfmt.toml |
What is Bevy?
Bevy is a refreshingly simple data-driven game engine built in Rust. It is free and open-source forever!
WARNING
Bevy is still in the early stages of development. Important features are missing. Documentation is sparse. A new version of Bevy containing breaking changes to the API is released approximately once every 3 months. We provide migration guides, but we can't guarantee migrations will always be easy. Use only if you are willing to work in this environment.
MSRV: Bevy relies heavily on improvements in the Rust language and compiler. As a result, the Minimum Supported Rust Version (MSRV) is generally close to "the latest stable release" of Rust.
Design Goals
- Capable: Offer a complete 2D and 3D feature set
- Simple: Easy for newbies to pick up, but infinitely flexible for power users
- Data Focused: Data-oriented architecture using the Entity Component System paradigm
- Modular: Use only what you need. Replace what you don't like
- Fast: App logic should run quickly, and when possible, in parallel
- Productive: Changes should compile quickly ... waiting isn't fun
About
- Features: A quick overview of Bevy's features.
- News: A development blog that covers our progress, plans and shiny new features.
Docs
- The Bevy Book: Bevy's official documentation. The best place to start learning Bevy.
- Bevy Rust API Docs: Bevy's Rust API docs, which are automatically generated from the doc comments in this repo.
- Official Examples: Bevy's dedicated, runnable examples, which are great for digging into specific concepts.
- Community-Made Learning Resources: More tutorials, documentation, and examples made by the Bevy community.
Community
Before contributing or participating in discussions with the community, you should familiarize yourself with our Code of Conduct.
- Discord: Bevy's official discord server.
- Reddit: Bevy's official subreddit.
- GitHub Discussions: The best place for questions about Bevy, answered right here!
- Bevy Assets: A collection of awesome Bevy projects, tools, plugins and learning materials.
Contributing
If you'd like to help build Bevy, check out the Contributor's Guide. For simple problems, feel free to open an issue or PR and tackle it yourself!
For more complex architecture decisions and experimental mad science, please open an RFC (Request For Comments) so we can brainstorm together effectively!
Getting Started
We recommend checking out The Bevy Book for a full tutorial.
Follow the Setup guide to ensure your development environment is set up correctly. Once set up, you can quickly try out the examples by cloning this repo and running the following commands:
# Switch to the correct version (latest release, default is main development branch)
git checkout latest
# Runs the "breakout" example
cargo run --example breakout
To draw a window with standard functionality enabled, use:
use bevy::prelude::*;
fn main(){
App::new()
.add_plugins(DefaultPlugins)
.run();
}
Fast Compiles
Bevy can be built just fine using default configuration on stable Rust. However for really fast iterative compiles, you should enable the "fast compiles" setup by following the instructions here.
Bevy Cargo Features
This list outlines the different cargo features supported by Bevy. These allow you to customize the Bevy feature set for your use-case.
Thanks
Bevy is the result of the hard work of many people. A huge thanks to all Bevy contributors, the many open source projects that have come before us, the Rust gamedev ecosystem, and the many libraries we build on.
A huge thanks to Bevy's generous sponsors. Bevy will always be free and open source, but it isn't free to make. Please consider sponsoring our work if you like what we're building.
This project is tested with BrowserStack.
License
Bevy is free, open source and permissively licensed! Except where noted (below and/or in individual files), all code in this repository is dual-licensed under either:
- MIT License (LICENSE-MIT or http://opensource.org/licenses/MIT)
- Apache License, Version 2.0 (LICENSE-APACHE or http://www.apache.org/licenses/LICENSE-2.0)
at your option. This means you can select the license you prefer! This dual-licensing approach is the de-facto standard in the Rust ecosystem and there are very good reasons to include both.
Some of the engine's code carries additional copyright notices and license terms due to their external origins.
These are generally BSD-like, but exact details vary by crate:
If the README of a crate contains a 'License' header (or similar), the additional copyright notices and license terms applicable to that crate will be listed.
The above licensing requirement still applies to contributions to those crates, and sections of those crates will carry those license terms.
The license field of each crate will also reflect this.
For example, bevy_mikktspace
has code under the Zlib license (as well as a copyright notice when choosing the MIT license).
The assets included in this repository (for our examples) typically fall under different open licenses. These will not be included in your game (unless copied in by you), and they are not distributed in the published bevy crates. See CREDITS.md for the details of the licenses of those files.
Your contributions
Unless you explicitly state otherwise, any contribution intentionally submitted for inclusion in the work by you, as defined in the Apache-2.0 license, shall be dual licensed as above, without any additional terms or conditions.