bevy/crates/bevy_pbr/src/render/parallax_mapping.wgsl
Rob Parrett e46e246581
Fix a few "repeated word" typos (#13955)
# Objective

Stumbled on one of these and went digging for more

## Solution

```diff
- word word
+ word
```
2024-06-20 21:35:20 +00:00

118 lines
4.8 KiB
WebGPU Shading Language

#define_import_path bevy_pbr::parallax_mapping
#import bevy_pbr::pbr_bindings::{depth_map_texture, depth_map_sampler}
fn sample_depth_map(uv: vec2<f32>) -> f32 {
// We use `textureSampleLevel` over `textureSample` because the wgpu DX12
// backend (Fxc) panics when using "gradient instructions" inside a loop.
// It results in the whole loop being unrolled by the shader compiler,
// which it can't do because the upper limit of the loop in steep parallax
// mapping is a variable set by the user.
// The "gradient instructions" comes from `textureSample` computing MIP level
// based on UV derivative. With `textureSampleLevel`, we provide ourselves
// the MIP level, so no gradient instructions are used, and we can use
// sample_depth_map in our loop.
// See https://stackoverflow.com/questions/56581141/direct3d11-gradient-instruction-used-in-a-loop-with-varying-iteration-forcing
return textureSampleLevel(depth_map_texture, depth_map_sampler, uv, 0.0).r;
}
// An implementation of parallax mapping, see https://en.wikipedia.org/wiki/Parallax_mapping
// Code derived from: https://web.archive.org/web/20150419215321/http://sunandblackcat.com/tipFullView.php?l=eng&topicid=28
fn parallaxed_uv(
depth_scale: f32,
max_layer_count: f32,
max_steps: u32,
// The original interpolated uv
original_uv: vec2<f32>,
// The vector from the camera to the fragment at the surface in tangent space
Vt: vec3<f32>,
) -> vec2<f32> {
if max_layer_count < 1.0 {
return original_uv;
}
var uv = original_uv;
// Steep Parallax Mapping
// ======================
// Split the depth map into `layer_count` layers.
// When Vt hits the surface of the mesh (excluding depth displacement),
// if the depth is not below or on surface including depth displacement (textureSample), then
// look forward (+= delta_uv) on depth texture according to
// Vt and distance between hit surface and depth map surface,
// repeat until below the surface.
//
// Where `layer_count` is interpolated between `1.0` and
// `max_layer_count` according to the steepness of Vt.
let view_steepness = abs(Vt.z);
// We mix with minimum value 1.0 because otherwise,
// with 0.0, we get a division by zero in surfaces parallel to viewport,
// resulting in a singularity.
let layer_count = mix(max_layer_count, 1.0, view_steepness);
let layer_depth = 1.0 / layer_count;
var delta_uv = depth_scale * layer_depth * Vt.xy * vec2(1.0, -1.0) / view_steepness;
var current_layer_depth = 0.0;
var texture_depth = sample_depth_map(uv);
// texture_depth > current_layer_depth means the depth map depth is deeper
// than the depth the ray would be at this UV offset so the ray has not
// intersected the surface
for (var i: i32 = 0; texture_depth > current_layer_depth && i <= i32(layer_count); i++) {
current_layer_depth += layer_depth;
uv += delta_uv;
texture_depth = sample_depth_map(uv);
}
#ifdef RELIEF_MAPPING
// Relief Mapping
// ==============
// "Refine" the rough result from Steep Parallax Mapping
// with a **binary search** between the layer selected by steep parallax
// and the next one to find a point closer to the depth map surface.
// This reduces the jaggy step artifacts from steep parallax mapping.
delta_uv *= 0.5;
var delta_depth = 0.5 * layer_depth;
uv -= delta_uv;
current_layer_depth -= delta_depth;
for (var i: u32 = 0u; i < max_steps; i++) {
texture_depth = sample_depth_map(uv);
// Halve the deltas for the next step
delta_uv *= 0.5;
delta_depth *= 0.5;
// Step based on whether the current depth is above or below the depth map
if (texture_depth > current_layer_depth) {
uv += delta_uv;
current_layer_depth += delta_depth;
} else {
uv -= delta_uv;
current_layer_depth -= delta_depth;
}
}
#else
// Parallax Occlusion mapping
// ==========================
// "Refine" Steep Parallax Mapping by interpolating between the
// previous layer's depth and the computed layer depth.
// Only requires a single lookup, unlike Relief Mapping, but
// may skip small details and result in writhing material artifacts.
let previous_uv = uv - delta_uv;
let next_depth = texture_depth - current_layer_depth;
let previous_depth = sample_depth_map(previous_uv) - current_layer_depth + layer_depth;
let weight = next_depth / (next_depth - previous_depth);
uv = mix(uv, previous_uv, weight);
current_layer_depth += mix(next_depth, previous_depth, weight);
#endif
// Note: `current_layer_depth` is not returned, but may be useful
// for light computation later on in future improvements of the pbr shader.
return uv;
}