mirror of
https://github.com/bevyengine/bevy
synced 2024-12-29 22:43:14 +00:00
015f2c69ca
# Objective Continue improving the user experience of our UI Node API in the direction specified by [Bevy's Next Generation Scene / UI System](https://github.com/bevyengine/bevy/discussions/14437) ## Solution As specified in the document above, merge `Style` fields into `Node`, and move "computed Node fields" into `ComputedNode` (I chose this name over something like `ComputedNodeLayout` because it currently contains more than just layout info. If we want to break this up / rename these concepts, lets do that in a separate PR). `Style` has been removed. This accomplishes a number of goals: ## Ergonomics wins Specifying both `Node` and `Style` is now no longer required for non-default styles Before: ```rust commands.spawn(( Node::default(), Style { width: Val::Px(100.), ..default() }, )); ``` After: ```rust commands.spawn(Node { width: Val::Px(100.), ..default() }); ``` ## Conceptual clarity `Style` was never a comprehensive "style sheet". It only defined "core" style properties that all `Nodes` shared. Any "styled property" that couldn't fit that mold had to be in a separate component. A "real" style system would style properties _across_ components (`Node`, `Button`, etc). We have plans to build a true style system (see the doc linked above). By moving the `Style` fields to `Node`, we fully embrace `Node` as the driving concept and remove the "style system" confusion. ## Next Steps * Consider identifying and splitting out "style properties that aren't core to Node". This should not happen for Bevy 0.15. --- ## Migration Guide Move any fields set on `Style` into `Node` and replace all `Style` component usage with `Node`. Before: ```rust commands.spawn(( Node::default(), Style { width: Val::Px(100.), ..default() }, )); ``` After: ```rust commands.spawn(Node { width: Val::Px(100.), ..default() }); ``` For any usage of the "computed node properties" that used to live on `Node`, use `ComputedNode` instead: Before: ```rust fn system(nodes: Query<&Node>) { for node in &nodes { let computed_size = node.size(); } } ``` After: ```rust fn system(computed_nodes: Query<&ComputedNode>) { for computed_node in &computed_nodes { let computed_size = computed_node.size(); } } ```
215 lines
6.7 KiB
Rust
215 lines
6.7 KiB
Rust
//! Demonstrates how to observe life-cycle triggers as well as define custom ones.
|
|
|
|
use bevy::{
|
|
prelude::*,
|
|
utils::{HashMap, HashSet},
|
|
};
|
|
use rand::{Rng, SeedableRng};
|
|
use rand_chacha::ChaCha8Rng;
|
|
|
|
fn main() {
|
|
App::new()
|
|
.add_plugins(DefaultPlugins)
|
|
.init_resource::<SpatialIndex>()
|
|
.add_systems(Startup, setup)
|
|
.add_systems(Update, (draw_shapes, handle_click))
|
|
// Observers are systems that run when an event is "triggered". This observer runs whenever
|
|
// `ExplodeMines` is triggered.
|
|
.add_observer(
|
|
|trigger: Trigger<ExplodeMines>,
|
|
mines: Query<&Mine>,
|
|
index: Res<SpatialIndex>,
|
|
mut commands: Commands| {
|
|
// You can access the trigger data via the `Observer`
|
|
let event = trigger.event();
|
|
// Access resources
|
|
for e in index.get_nearby(event.pos) {
|
|
// Run queries
|
|
let mine = mines.get(e).unwrap();
|
|
if mine.pos.distance(event.pos) < mine.size + event.radius {
|
|
// And queue commands, including triggering additional events
|
|
// Here we trigger the `Explode` event for entity `e`
|
|
commands.trigger_targets(Explode, e);
|
|
}
|
|
}
|
|
},
|
|
)
|
|
// This observer runs whenever the `Mine` component is added to an entity, and places it in a simple spatial index.
|
|
.add_observer(on_add_mine)
|
|
// This observer runs whenever the `Mine` component is removed from an entity (including despawning it)
|
|
// and removes it from the spatial index.
|
|
.add_observer(on_remove_mine)
|
|
.run();
|
|
}
|
|
|
|
#[derive(Component)]
|
|
struct Mine {
|
|
pos: Vec2,
|
|
size: f32,
|
|
}
|
|
|
|
impl Mine {
|
|
fn random(rand: &mut ChaCha8Rng) -> Self {
|
|
Mine {
|
|
pos: Vec2::new(
|
|
(rand.gen::<f32>() - 0.5) * 1200.0,
|
|
(rand.gen::<f32>() - 0.5) * 600.0,
|
|
),
|
|
size: 4.0 + rand.gen::<f32>() * 16.0,
|
|
}
|
|
}
|
|
}
|
|
|
|
#[derive(Event)]
|
|
struct ExplodeMines {
|
|
pos: Vec2,
|
|
radius: f32,
|
|
}
|
|
|
|
#[derive(Event)]
|
|
struct Explode;
|
|
|
|
fn setup(mut commands: Commands) {
|
|
commands.spawn(Camera2d);
|
|
commands.spawn((
|
|
Text::new(
|
|
"Click on a \"Mine\" to trigger it.\n\
|
|
When it explodes it will trigger all overlapping mines.",
|
|
),
|
|
Node {
|
|
position_type: PositionType::Absolute,
|
|
top: Val::Px(12.),
|
|
left: Val::Px(12.),
|
|
..default()
|
|
},
|
|
));
|
|
|
|
let mut rng = ChaCha8Rng::seed_from_u64(19878367467713);
|
|
|
|
commands
|
|
.spawn(Mine::random(&mut rng))
|
|
// Observers can watch for events targeting a specific entity.
|
|
// This will create a new observer that runs whenever the Explode event
|
|
// is triggered for this spawned entity.
|
|
.observe(explode_mine);
|
|
|
|
// We want to spawn a bunch of mines. We could just call the code above for each of them.
|
|
// That would create a new observer instance for every Mine entity. Having duplicate observers
|
|
// generally isn't worth worrying about as the overhead is low. But if you want to be maximally efficient,
|
|
// you can reuse observers across entities.
|
|
//
|
|
// First, observers are actually just entities with the Observer component! The `observe()` functions
|
|
// you've seen so far in this example are just shorthand for manually spawning an observer.
|
|
let mut observer = Observer::new(explode_mine);
|
|
|
|
// As we spawn entities, we can make this observer watch each of them:
|
|
for _ in 0..1000 {
|
|
let entity = commands.spawn(Mine::random(&mut rng)).id();
|
|
observer.watch_entity(entity);
|
|
}
|
|
|
|
// By spawning the Observer component, it becomes active!
|
|
commands.spawn(observer);
|
|
}
|
|
|
|
fn on_add_mine(
|
|
trigger: Trigger<OnAdd, Mine>,
|
|
query: Query<&Mine>,
|
|
mut index: ResMut<SpatialIndex>,
|
|
) {
|
|
let mine = query.get(trigger.entity()).unwrap();
|
|
let tile = (
|
|
(mine.pos.x / CELL_SIZE).floor() as i32,
|
|
(mine.pos.y / CELL_SIZE).floor() as i32,
|
|
);
|
|
index.map.entry(tile).or_default().insert(trigger.entity());
|
|
}
|
|
|
|
// Remove despawned mines from our index
|
|
fn on_remove_mine(
|
|
trigger: Trigger<OnRemove, Mine>,
|
|
query: Query<&Mine>,
|
|
mut index: ResMut<SpatialIndex>,
|
|
) {
|
|
let mine = query.get(trigger.entity()).unwrap();
|
|
let tile = (
|
|
(mine.pos.x / CELL_SIZE).floor() as i32,
|
|
(mine.pos.y / CELL_SIZE).floor() as i32,
|
|
);
|
|
index.map.entry(tile).and_modify(|set| {
|
|
set.remove(&trigger.entity());
|
|
});
|
|
}
|
|
|
|
fn explode_mine(trigger: Trigger<Explode>, query: Query<&Mine>, mut commands: Commands) {
|
|
// If a triggered event is targeting a specific entity you can access it with `.entity()`
|
|
let id = trigger.entity();
|
|
let Some(mut entity) = commands.get_entity(id) else {
|
|
return;
|
|
};
|
|
info!("Boom! {:?} exploded.", id.index());
|
|
entity.despawn();
|
|
let mine = query.get(id).unwrap();
|
|
// Trigger another explosion cascade.
|
|
commands.trigger(ExplodeMines {
|
|
pos: mine.pos,
|
|
radius: mine.size,
|
|
});
|
|
}
|
|
|
|
// Draw a circle for each mine using `Gizmos`
|
|
fn draw_shapes(mut gizmos: Gizmos, mines: Query<&Mine>) {
|
|
for mine in &mines {
|
|
gizmos.circle_2d(
|
|
mine.pos,
|
|
mine.size,
|
|
Color::hsl((mine.size - 4.0) / 16.0 * 360.0, 1.0, 0.8),
|
|
);
|
|
}
|
|
}
|
|
|
|
// Trigger `ExplodeMines` at the position of a given click
|
|
fn handle_click(
|
|
mouse_button_input: Res<ButtonInput<MouseButton>>,
|
|
camera: Single<(&Camera, &GlobalTransform)>,
|
|
windows: Single<&Window>,
|
|
mut commands: Commands,
|
|
) {
|
|
let (camera, camera_transform) = *camera;
|
|
if let Some(pos) = windows
|
|
.cursor_position()
|
|
.and_then(|cursor| camera.viewport_to_world(camera_transform, cursor).ok())
|
|
.map(|ray| ray.origin.truncate())
|
|
{
|
|
if mouse_button_input.just_pressed(MouseButton::Left) {
|
|
commands.trigger(ExplodeMines { pos, radius: 1.0 });
|
|
}
|
|
}
|
|
}
|
|
|
|
#[derive(Resource, Default)]
|
|
struct SpatialIndex {
|
|
map: HashMap<(i32, i32), HashSet<Entity>>,
|
|
}
|
|
|
|
/// Cell size has to be bigger than any `TriggerMine::radius`
|
|
const CELL_SIZE: f32 = 64.0;
|
|
|
|
impl SpatialIndex {
|
|
// Lookup all entities within adjacent cells of our spatial index
|
|
fn get_nearby(&self, pos: Vec2) -> Vec<Entity> {
|
|
let tile = (
|
|
(pos.x / CELL_SIZE).floor() as i32,
|
|
(pos.y / CELL_SIZE).floor() as i32,
|
|
);
|
|
let mut nearby = Vec::new();
|
|
for x in -1..2 {
|
|
for y in -1..2 {
|
|
if let Some(mines) = self.map.get(&(tile.0 + x, tile.1 + y)) {
|
|
nearby.extend(mines.iter());
|
|
}
|
|
}
|
|
}
|
|
nearby
|
|
}
|
|
}
|