bevy/examples/window/low_power.rs
Pietro 061bee7e3c
fix: upgrade to winit v0.30 (#13366)
# Objective

- Upgrade winit to v0.30
- Fixes https://github.com/bevyengine/bevy/issues/13331

## Solution

This is a rewrite/adaptation of the new trait system described and
implemented in `winit` v0.30.

## Migration Guide

The custom UserEvent is now renamed as WakeUp, used to wake up the loop
if anything happens outside the app (a new
[custom_user_event](https://github.com/bevyengine/bevy/pull/13366/files#diff-2de8c0a8d3028d0059a3d80ae31b2bbc1cde2595ce2d317ea378fe3e0cf6ef2d)
shows this behavior.

The internal `UpdateState` has been removed and replaced internally by
the AppLifecycle. When changed, the AppLifecycle is sent as an event.

The `UpdateMode` now accepts only two values: `Continuous` and
`Reactive`, but the latter exposes 3 new properties to enable reactive
to device, user or window events. The previous `UpdateMode::Reactive` is
now equivalent to `UpdateMode::reactive()`, while
`UpdateMode::ReactiveLowPower` to `UpdateMode::reactive_low_power()`.

The `ApplicationLifecycle` has been renamed as `AppLifecycle`, and now
contains the possible values of the application state inside the event
loop:
* `Idle`: the loop has not started yet
* `Running` (previously called `Started`): the loop is running
* `WillSuspend`: the loop is going to be suspended
* `Suspended`: the loop is suspended
* `WillResume`: the loop is going to be resumed

Note: the `Resumed` state has been removed since the resumed app is just
running.

Finally, now that `winit` enables this, it extends the `WinitPlugin` to
support custom events.

## Test platforms

- [x] Windows
- [x] MacOs
- [x] Linux (x11)
- [x] Linux (Wayland)
- [x] Android
- [x] iOS
- [x] WASM/WebGPU
- [x] WASM/WebGL2

## Outstanding issues / regressions

- [ ] iOS: build failed in CI
   - blocking, but may just be flakiness
- [x] Cross-platform: when the window is maximised, changes in the scale
factor don't apply, to make them apply one has to make the window
smaller again. (Re-maximising keeps the updated scale factor)
    - non-blocking, but good to fix
- [ ] Android: it's pretty easy to quickly open and close the app and
then the music keeps playing when suspended.
    - non-blocking but worrying
- [ ]  Web: the application will hang when switching tabs
- Not new, duplicate of https://github.com/bevyengine/bevy/issues/13486
- [ ] Cross-platform?: Screenshot failure, `ERROR present_frames:
wgpu_core::present: No work has been submitted for this frame before`
taking the first screenshot, but after pressing space
    - non-blocking, but good to fix

---------

Co-authored-by: François <francois.mockers@vleue.com>
2024-06-03 13:06:48 +00:00

220 lines
8.1 KiB
Rust

//! This example illustrates how to run a winit window in a reactive, low power mode.
//!
//! This is useful for making desktop applications, or any other program that doesn't need to be
//! running the event loop non-stop.
use bevy::window::WindowResolution;
use bevy::winit::WakeUp;
use bevy::{
prelude::*,
utils::Duration,
window::{PresentMode, WindowPlugin},
winit::{EventLoopProxy, WinitSettings},
};
fn main() {
App::new()
// Continuous rendering for games - bevy's default.
.insert_resource(WinitSettings::game())
// Power-saving reactive rendering for applications.
.insert_resource(WinitSettings::desktop_app())
// You can also customize update behavior with the fields of [`WinitSettings`]
.insert_resource(WinitSettings {
focused_mode: bevy::winit::UpdateMode::Continuous,
unfocused_mode: bevy::winit::UpdateMode::reactive_low_power(Duration::from_millis(10)),
})
.insert_resource(ExampleMode::Game)
.add_plugins(DefaultPlugins.set(WindowPlugin {
primary_window: Some(Window {
// Turn off vsync to maximize CPU/GPU usage
present_mode: PresentMode::AutoNoVsync,
resolution: WindowResolution::new(800., 640.).with_scale_factor_override(1.),
..default()
}),
..default()
}))
.add_systems(Startup, test_setup::setup)
.add_systems(
Update,
(
test_setup::cycle_modes,
test_setup::rotate_cube,
test_setup::update_text,
update_winit,
),
)
.run();
}
#[derive(Resource, Debug)]
enum ExampleMode {
Game,
Application,
ApplicationWithRedraw,
}
/// Update winit based on the current `ExampleMode`
fn update_winit(
mode: Res<ExampleMode>,
mut winit_config: ResMut<WinitSettings>,
event_loop_proxy: NonSend<EventLoopProxy<WakeUp>>,
) {
use ExampleMode::*;
*winit_config = match *mode {
Game => {
// In the default `WinitSettings::game()` mode:
// * When focused: the event loop runs as fast as possible
// * When not focused: the app will update when the window is directly interacted with
// (e.g. the mouse hovers over a visible part of the out of focus window), a
// [`RequestRedraw`] event is received, or one sixtieth of a second has passed
// without the app updating (60 Hz refresh rate max).
WinitSettings::game()
}
Application => {
// While in `WinitSettings::desktop_app()` mode:
// * When focused: the app will update any time a winit event (e.g. the window is
// moved/resized, the mouse moves, a button is pressed, etc.), a [`RequestRedraw`]
// event is received, or after 5 seconds if the app has not updated.
// * When not focused: the app will update when the window is directly interacted with
// (e.g. the mouse hovers over a visible part of the out of focus window), a
// [`RequestRedraw`] event is received, or one minute has passed without the app
// updating.
WinitSettings {
focused_mode: bevy::winit::UpdateMode::reactive(Duration::from_secs(1)),
unfocused_mode: bevy::winit::UpdateMode::reactive_low_power(Duration::from_secs(5)),
}
}
ApplicationWithRedraw => {
// Sending a `RequestRedraw` event is useful when you want the app to update the next
// frame regardless of any user input. For example, your application might use
// `WinitSettings::desktop_app()` to reduce power use, but UI animations need to play even
// when there are no inputs, so you send redraw requests while the animation is playing.
// Note that in this example the RequestRedraw winit event will make the app run in the same
// way as continuous
let _ = event_loop_proxy.send_event(WakeUp);
WinitSettings::desktop_app()
}
};
}
/// Everything in this module is for setting up and animating the scene, and is not important to the
/// demonstrated features.
pub(crate) mod test_setup {
use crate::ExampleMode;
use bevy::{
color::palettes::basic::{LIME, YELLOW},
prelude::*,
window::RequestRedraw,
};
/// Switch between update modes when the mouse is clicked.
pub(crate) fn cycle_modes(
mut mode: ResMut<ExampleMode>,
button_input: Res<ButtonInput<KeyCode>>,
) {
if button_input.just_pressed(KeyCode::Space) {
*mode = match *mode {
ExampleMode::Game => ExampleMode::Application,
ExampleMode::Application => ExampleMode::ApplicationWithRedraw,
ExampleMode::ApplicationWithRedraw => ExampleMode::Game,
};
}
}
#[derive(Component)]
pub(crate) struct Rotator;
/// Rotate the cube to make it clear when the app is updating
pub(crate) fn rotate_cube(
time: Res<Time>,
mut cube_transform: Query<&mut Transform, With<Rotator>>,
) {
for mut transform in &mut cube_transform {
transform.rotate_x(time.delta_seconds());
transform.rotate_local_y(time.delta_seconds());
}
}
#[derive(Component)]
pub struct ModeText;
pub(crate) fn update_text(
mut frame: Local<usize>,
mode: Res<ExampleMode>,
mut query: Query<&mut Text, With<ModeText>>,
) {
*frame += 1;
let mode = match *mode {
ExampleMode::Game => "game(), continuous, default",
ExampleMode::Application => "desktop_app(), reactive",
ExampleMode::ApplicationWithRedraw => "desktop_app(), reactive, RequestRedraw sent",
};
let mut text = query.single_mut();
text.sections[1].value = mode.to_string();
text.sections[3].value = frame.to_string();
}
/// Set up a scene with a cube and some text
pub fn setup(
mut commands: Commands,
mut meshes: ResMut<Assets<Mesh>>,
mut materials: ResMut<Assets<StandardMaterial>>,
mut event: EventWriter<RequestRedraw>,
) {
commands.spawn((
PbrBundle {
mesh: meshes.add(Cuboid::new(0.5, 0.5, 0.5)),
material: materials.add(Color::srgb(0.8, 0.7, 0.6)),
..default()
},
Rotator,
));
commands.spawn(DirectionalLightBundle {
transform: Transform::from_xyz(1.0, 1.0, 1.0).looking_at(Vec3::ZERO, Vec3::Y),
..default()
});
commands.spawn(Camera3dBundle {
transform: Transform::from_xyz(-2.0, 2.0, 2.0).looking_at(Vec3::ZERO, Vec3::Y),
..default()
});
event.send(RequestRedraw);
commands.spawn((
TextBundle::from_sections([
TextSection::new(
"Press space bar to cycle modes\n",
TextStyle {
font_size: 50.0,
..default()
},
),
TextSection::from_style(TextStyle {
font_size: 50.0,
color: LIME.into(),
..default()
}),
TextSection::new(
"\nFrame: ",
TextStyle {
font_size: 50.0,
color: YELLOW.into(),
..default()
},
),
TextSection::from_style(TextStyle {
font_size: 50.0,
color: YELLOW.into(),
..default()
}),
])
.with_style(Style {
align_self: AlignSelf::FlexStart,
position_type: PositionType::Absolute,
top: Val::Px(5.0),
left: Val::Px(5.0),
..default()
}),
ModeText,
));
}
}