bevy/examples/stress_tests/many_cubes.rs
Shane 484721be80
Have EntityCommands methods consume self for easier chaining (#14897)
# Objective

Fixes #14883

## Solution

Pretty simple update to `EntityCommands` methods to consume `self` and
return it rather than taking `&mut self`. The things probably worth
noting:

* I added `#[allow(clippy::should_implement_trait)]` to the `add` method
because it causes a linting conflict with `std::ops::Add`.
* `despawn` and `log_components` now return `Self`. I'm not sure if
that's exactly the desired behavior so I'm happy to adjust if that seems
wrong.

## Testing

Tested with `cargo run -p ci`. I think that should be sufficient to call
things good.

## Migration Guide

The most likely migration needed is changing code from this:

```
        let mut entity = commands.get_or_spawn(entity);

        if depth_prepass {
            entity.insert(DepthPrepass);
        }
        if normal_prepass {
            entity.insert(NormalPrepass);
        }
        if motion_vector_prepass {
            entity.insert(MotionVectorPrepass);
        }
        if deferred_prepass {
            entity.insert(DeferredPrepass);
        }
```

to this:

```
        let mut entity = commands.get_or_spawn(entity);

        if depth_prepass {
            entity = entity.insert(DepthPrepass);
        }
        if normal_prepass {
            entity = entity.insert(NormalPrepass);
        }
        if motion_vector_prepass {
            entity = entity.insert(MotionVectorPrepass);
        }
        if deferred_prepass {
            entity.insert(DeferredPrepass);
        }
```

as can be seen in several of the example code updates here. There will
probably also be instances where mutable `EntityCommands` vars no longer
need to be mutable.
2024-08-26 18:24:59 +00:00

494 lines
18 KiB
Rust

//! Simple benchmark to test per-entity draw overhead.
//!
//! To measure performance realistically, be sure to run this in release mode.
//! `cargo run --example many_cubes --release`
//!
//! By default, this arranges the meshes in a spherical pattern that
//! distributes the meshes evenly.
//!
//! See `cargo run --example many_cubes --release -- --help` for more options.
use std::{f64::consts::PI, str::FromStr};
use argh::FromArgs;
use bevy::{
diagnostic::{FrameTimeDiagnosticsPlugin, LogDiagnosticsPlugin},
math::{DVec2, DVec3},
pbr::NotShadowCaster,
prelude::*,
render::{
batching::NoAutomaticBatching,
render_asset::RenderAssetUsages,
render_resource::{Extent3d, TextureDimension, TextureFormat},
view::{GpuCulling, NoCpuCulling, NoFrustumCulling},
},
window::{PresentMode, WindowResolution},
winit::{UpdateMode, WinitSettings},
};
use rand::{seq::SliceRandom, Rng, SeedableRng};
use rand_chacha::ChaCha8Rng;
#[derive(FromArgs, Resource)]
/// `many_cubes` stress test
struct Args {
/// how the cube instances should be positioned.
#[argh(option, default = "Layout::Sphere")]
layout: Layout,
/// whether to step the camera animation by a fixed amount such that each frame is the same across runs.
#[argh(switch)]
benchmark: bool,
/// whether to vary the material data in each instance.
#[argh(switch)]
vary_material_data_per_instance: bool,
/// the number of different textures from which to randomly select the material base color. 0 means no textures.
#[argh(option, default = "0")]
material_texture_count: usize,
/// the number of different meshes from which to randomly select. Clamped to at least 1.
#[argh(option, default = "1")]
mesh_count: usize,
/// whether to disable all frustum culling. Stresses queuing and batching as all mesh material entities in the scene are always drawn.
#[argh(switch)]
no_frustum_culling: bool,
/// whether to disable automatic batching. Skips batching resulting in heavy stress on render pass draw command encoding.
#[argh(switch)]
no_automatic_batching: bool,
/// whether to enable GPU culling.
#[argh(switch)]
gpu_culling: bool,
/// whether to disable CPU culling.
#[argh(switch)]
no_cpu_culling: bool,
/// whether to enable directional light cascaded shadow mapping.
#[argh(switch)]
shadows: bool,
}
#[derive(Default, Clone)]
enum Layout {
Cube,
#[default]
Sphere,
}
impl FromStr for Layout {
type Err = String;
fn from_str(s: &str) -> Result<Self, Self::Err> {
match s {
"cube" => Ok(Self::Cube),
"sphere" => Ok(Self::Sphere),
_ => Err(format!(
"Unknown layout value: '{}', valid options: 'cube', 'sphere'",
s
)),
}
}
}
fn main() {
// `from_env` panics on the web
#[cfg(not(target_arch = "wasm32"))]
let args: Args = argh::from_env();
#[cfg(target_arch = "wasm32")]
let args = Args::from_args(&[], &[]).unwrap();
App::new()
.add_plugins((
DefaultPlugins.set(WindowPlugin {
primary_window: Some(Window {
present_mode: PresentMode::AutoNoVsync,
resolution: WindowResolution::new(1920.0, 1080.0)
.with_scale_factor_override(1.0),
..default()
}),
..default()
}),
FrameTimeDiagnosticsPlugin,
LogDiagnosticsPlugin::default(),
))
.insert_resource(WinitSettings {
focused_mode: UpdateMode::Continuous,
unfocused_mode: UpdateMode::Continuous,
})
.insert_resource(args)
.add_systems(Startup, setup)
.add_systems(Update, (move_camera, print_mesh_count))
.run();
}
const WIDTH: usize = 200;
const HEIGHT: usize = 200;
fn setup(
mut commands: Commands,
args: Res<Args>,
mesh_assets: ResMut<Assets<Mesh>>,
material_assets: ResMut<Assets<StandardMaterial>>,
images: ResMut<Assets<Image>>,
) {
warn!(include_str!("warning_string.txt"));
let args = args.into_inner();
let images = images.into_inner();
let material_assets = material_assets.into_inner();
let mesh_assets = mesh_assets.into_inner();
let meshes = init_meshes(args, mesh_assets);
let material_textures = init_textures(args, images);
let materials = init_materials(args, &material_textures, material_assets);
// We're seeding the PRNG here to make this example deterministic for testing purposes.
// This isn't strictly required in practical use unless you need your app to be deterministic.
let mut material_rng = ChaCha8Rng::seed_from_u64(42);
match args.layout {
Layout::Sphere => {
// NOTE: This pattern is good for testing performance of culling as it provides roughly
// the same number of visible meshes regardless of the viewing angle.
const N_POINTS: usize = WIDTH * HEIGHT * 4;
// NOTE: f64 is used to avoid precision issues that produce visual artifacts in the distribution
let radius = WIDTH as f64 * 2.5;
let golden_ratio = 0.5f64 * (1.0f64 + 5.0f64.sqrt());
for i in 0..N_POINTS {
let spherical_polar_theta_phi =
fibonacci_spiral_on_sphere(golden_ratio, i, N_POINTS);
let unit_sphere_p = spherical_polar_to_cartesian(spherical_polar_theta_phi);
let (mesh, transform) = meshes.choose(&mut material_rng).unwrap();
commands
.spawn(PbrBundle {
mesh: mesh.clone(),
material: materials.choose(&mut material_rng).unwrap().clone(),
transform: Transform::from_translation((radius * unit_sphere_p).as_vec3())
.looking_at(Vec3::ZERO, Vec3::Y)
.mul_transform(*transform),
..default()
})
.insert_if(NoFrustumCulling, || args.no_frustum_culling)
.insert_if(NoAutomaticBatching, || args.no_automatic_batching);
}
// camera
let mut camera = commands.spawn(Camera3dBundle::default());
if args.gpu_culling {
camera = camera.insert(GpuCulling);
}
if args.no_cpu_culling {
camera.insert(NoCpuCulling);
}
// Inside-out box around the meshes onto which shadows are cast (though you cannot see them...)
commands.spawn((
PbrBundle {
mesh: mesh_assets.add(Cuboid::from_size(Vec3::splat(radius as f32 * 2.2))),
material: material_assets.add(StandardMaterial::from(Color::WHITE)),
transform: Transform::from_scale(-Vec3::ONE),
..default()
},
NotShadowCaster,
));
}
_ => {
// NOTE: This pattern is good for demonstrating that frustum culling is working correctly
// as the number of visible meshes rises and falls depending on the viewing angle.
let scale = 2.5;
for x in 0..WIDTH {
for y in 0..HEIGHT {
// introduce spaces to break any kind of moiré pattern
if x % 10 == 0 || y % 10 == 0 {
continue;
}
// cube
commands.spawn(PbrBundle {
mesh: meshes.choose(&mut material_rng).unwrap().0.clone(),
material: materials.choose(&mut material_rng).unwrap().clone(),
transform: Transform::from_xyz((x as f32) * scale, (y as f32) * scale, 0.0),
..default()
});
commands.spawn(PbrBundle {
mesh: meshes.choose(&mut material_rng).unwrap().0.clone(),
material: materials.choose(&mut material_rng).unwrap().clone(),
transform: Transform::from_xyz(
(x as f32) * scale,
HEIGHT as f32 * scale,
(y as f32) * scale,
),
..default()
});
commands.spawn(PbrBundle {
mesh: meshes.choose(&mut material_rng).unwrap().0.clone(),
material: materials.choose(&mut material_rng).unwrap().clone(),
transform: Transform::from_xyz((x as f32) * scale, 0.0, (y as f32) * scale),
..default()
});
commands.spawn(PbrBundle {
mesh: meshes.choose(&mut material_rng).unwrap().0.clone(),
material: materials.choose(&mut material_rng).unwrap().clone(),
transform: Transform::from_xyz(0.0, (x as f32) * scale, (y as f32) * scale),
..default()
});
}
}
// camera
let center = 0.5 * scale * Vec3::new(WIDTH as f32, HEIGHT as f32, WIDTH as f32);
commands.spawn(Camera3dBundle {
transform: Transform::from_translation(center),
..default()
});
// Inside-out box around the meshes onto which shadows are cast (though you cannot see them...)
commands.spawn((
PbrBundle {
mesh: mesh_assets.add(Cuboid::from_size(2.0 * 1.1 * center)),
material: material_assets.add(StandardMaterial::from(Color::WHITE)),
transform: Transform::from_scale(-Vec3::ONE).with_translation(center),
..default()
},
NotShadowCaster,
));
}
}
commands.spawn(DirectionalLightBundle {
directional_light: DirectionalLight {
shadows_enabled: args.shadows,
..default()
},
transform: Transform::IDENTITY.looking_at(Vec3::new(0.0, -1.0, -1.0), Vec3::Y),
..default()
});
}
fn init_textures(args: &Args, images: &mut Assets<Image>) -> Vec<Handle<Image>> {
// We're seeding the PRNG here to make this example deterministic for testing purposes.
// This isn't strictly required in practical use unless you need your app to be deterministic.
let mut color_rng = ChaCha8Rng::seed_from_u64(42);
let color_bytes: Vec<u8> = (0..(args.material_texture_count * 4))
.map(|i| if (i % 4) == 3 { 255 } else { color_rng.gen() })
.collect();
color_bytes
.chunks(4)
.map(|pixel| {
images.add(Image::new_fill(
Extent3d {
width: 1,
height: 1,
depth_or_array_layers: 1,
},
TextureDimension::D2,
pixel,
TextureFormat::Rgba8UnormSrgb,
RenderAssetUsages::RENDER_WORLD,
))
})
.collect()
}
fn init_materials(
args: &Args,
textures: &[Handle<Image>],
assets: &mut Assets<StandardMaterial>,
) -> Vec<Handle<StandardMaterial>> {
let capacity = if args.vary_material_data_per_instance {
match args.layout {
Layout::Cube => (WIDTH - WIDTH / 10) * (HEIGHT - HEIGHT / 10),
Layout::Sphere => WIDTH * HEIGHT * 4,
}
} else {
args.material_texture_count
}
.max(1);
let mut materials = Vec::with_capacity(capacity);
materials.push(assets.add(StandardMaterial {
base_color: Color::WHITE,
base_color_texture: textures.first().cloned(),
..default()
}));
// We're seeding the PRNG here to make this example deterministic for testing purposes.
// This isn't strictly required in practical use unless you need your app to be deterministic.
let mut color_rng = ChaCha8Rng::seed_from_u64(42);
let mut texture_rng = ChaCha8Rng::seed_from_u64(42);
materials.extend(
std::iter::repeat_with(|| {
assets.add(StandardMaterial {
base_color: Color::srgb_u8(color_rng.gen(), color_rng.gen(), color_rng.gen()),
base_color_texture: textures.choose(&mut texture_rng).cloned(),
..default()
})
})
.take(capacity - materials.len()),
);
materials
}
fn init_meshes(args: &Args, assets: &mut Assets<Mesh>) -> Vec<(Handle<Mesh>, Transform)> {
let capacity = args.mesh_count.max(1);
// We're seeding the PRNG here to make this example deterministic for testing purposes.
// This isn't strictly required in practical use unless you need your app to be deterministic.
let mut radius_rng = ChaCha8Rng::seed_from_u64(42);
let mut variant = 0;
std::iter::repeat_with(|| {
let radius = radius_rng.gen_range(0.25f32..=0.75f32);
let (handle, transform) = match variant % 15 {
0 => (
assets.add(Cuboid {
half_size: Vec3::splat(radius),
}),
Transform::IDENTITY,
),
1 => (
assets.add(Capsule3d {
radius,
half_length: radius,
}),
Transform::IDENTITY,
),
2 => (
assets.add(Circle { radius }),
Transform::IDENTITY.looking_at(Vec3::Z, Vec3::Y),
),
3 => {
let mut vertices = [Vec2::ZERO; 3];
let dtheta = std::f32::consts::TAU / 3.0;
for (i, vertex) in vertices.iter_mut().enumerate() {
let (s, c) = (i as f32 * dtheta).sin_cos();
*vertex = Vec2::new(c, s) * radius;
}
(
assets.add(Triangle2d { vertices }),
Transform::IDENTITY.looking_at(Vec3::Z, Vec3::Y),
)
}
4 => (
assets.add(Rectangle {
half_size: Vec2::splat(radius),
}),
Transform::IDENTITY.looking_at(Vec3::Z, Vec3::Y),
),
v if (5..=8).contains(&v) => (
assets.add(RegularPolygon {
circumcircle: Circle { radius },
sides: v,
}),
Transform::IDENTITY.looking_at(Vec3::Z, Vec3::Y),
),
9 => (
assets.add(Cylinder {
radius,
half_height: radius,
}),
Transform::IDENTITY,
),
10 => (
assets.add(Ellipse {
half_size: Vec2::new(radius, 0.5 * radius),
}),
Transform::IDENTITY.looking_at(Vec3::Z, Vec3::Y),
),
11 => (
assets.add(
Plane3d {
normal: Dir3::NEG_Z,
half_size: Vec2::splat(0.5),
}
.mesh()
.size(radius, radius),
),
Transform::IDENTITY,
),
12 => (assets.add(Sphere { radius }), Transform::IDENTITY),
13 => (
assets.add(Torus {
minor_radius: 0.5 * radius,
major_radius: radius,
}),
Transform::IDENTITY.looking_at(Vec3::Y, Vec3::Y),
),
14 => (
assets.add(Capsule2d {
radius,
half_length: radius,
}),
Transform::IDENTITY.looking_at(Vec3::Z, Vec3::Y),
),
_ => unreachable!(),
};
variant += 1;
(handle, transform)
})
.take(capacity)
.collect()
}
// NOTE: This epsilon value is apparently optimal for optimizing for the average
// nearest-neighbor distance. See:
// http://extremelearning.com.au/how-to-evenly-distribute-points-on-a-sphere-more-effectively-than-the-canonical-fibonacci-lattice/
// for details.
const EPSILON: f64 = 0.36;
fn fibonacci_spiral_on_sphere(golden_ratio: f64, i: usize, n: usize) -> DVec2 {
DVec2::new(
PI * 2. * (i as f64 / golden_ratio),
(1.0 - 2.0 * (i as f64 + EPSILON) / (n as f64 - 1.0 + 2.0 * EPSILON)).acos(),
)
}
fn spherical_polar_to_cartesian(p: DVec2) -> DVec3 {
let (sin_theta, cos_theta) = p.x.sin_cos();
let (sin_phi, cos_phi) = p.y.sin_cos();
DVec3::new(cos_theta * sin_phi, sin_theta * sin_phi, cos_phi)
}
// System for rotating the camera
fn move_camera(
time: Res<Time>,
args: Res<Args>,
mut camera_query: Query<&mut Transform, With<Camera>>,
) {
let mut camera_transform = camera_query.single_mut();
let delta = 0.15
* if args.benchmark {
1.0 / 60.0
} else {
time.delta_seconds()
};
camera_transform.rotate_z(delta);
camera_transform.rotate_x(delta);
}
// System for printing the number of meshes on every tick of the timer
fn print_mesh_count(
time: Res<Time>,
mut timer: Local<PrintingTimer>,
sprites: Query<(&Handle<Mesh>, &ViewVisibility)>,
) {
timer.tick(time.delta());
if timer.just_finished() {
info!(
"Meshes: {} - Visible Meshes {}",
sprites.iter().len(),
sprites.iter().filter(|(_, vis)| vis.get()).count(),
);
}
}
#[derive(Deref, DerefMut)]
struct PrintingTimer(Timer);
impl Default for PrintingTimer {
fn default() -> Self {
Self(Timer::from_seconds(1.0, TimerMode::Repeating))
}
}