mirror of
https://github.com/bevyengine/bevy
synced 2024-11-29 08:00:20 +00:00
01aedc8431
# Objective Now that we can consolidate Bundles and Components under a single insert (thanks to #2975 and #6039), almost 100% of world spawns now look like `world.spawn().insert((Some, Tuple, Here))`. Spawning an entity without any components is an extremely uncommon pattern, so it makes sense to give spawn the "first class" ergonomic api. This consolidated api should be made consistent across all spawn apis (such as World and Commands). ## Solution All `spawn` apis (`World::spawn`, `Commands:;spawn`, `ChildBuilder::spawn`, and `WorldChildBuilder::spawn`) now accept a bundle as input: ```rust // before: commands .spawn() .insert((A, B, C)); world .spawn() .insert((A, B, C); // after commands.spawn((A, B, C)); world.spawn((A, B, C)); ``` All existing instances of `spawn_bundle` have been deprecated in favor of the new `spawn` api. A new `spawn_empty` has been added, replacing the old `spawn` api. By allowing `world.spawn(some_bundle)` to replace `world.spawn().insert(some_bundle)`, this opened the door to removing the initial entity allocation in the "empty" archetype / table done in `spawn()` (and subsequent move to the actual archetype in `.insert(some_bundle)`). This improves spawn performance by over 10%: ![image](https://user-images.githubusercontent.com/2694663/191627587-4ab2f949-4ccd-4231-80eb-80dd4d9ad6b9.png) To take this measurement, I added a new `world_spawn` benchmark. Unfortunately, optimizing `Commands::spawn` is slightly less trivial, as Commands expose the Entity id of spawned entities prior to actually spawning. Doing the optimization would (naively) require assurances that the `spawn(some_bundle)` command is applied before all other commands involving the entity (which would not necessarily be true, if memory serves). Optimizing `Commands::spawn` this way does feel possible, but it will require careful thought (and maybe some additional checks), which deserves its own PR. For now, it has the same performance characteristics of the current `Commands::spawn_bundle` on main. **Note that 99% of this PR is simple renames and refactors. The only code that needs careful scrutiny is the new `World::spawn()` impl, which is relatively straightforward, but it has some new unsafe code (which re-uses battle tested BundlerSpawner code path).** --- ## Changelog - All `spawn` apis (`World::spawn`, `Commands:;spawn`, `ChildBuilder::spawn`, and `WorldChildBuilder::spawn`) now accept a bundle as input - All instances of `spawn_bundle` have been deprecated in favor of the new `spawn` api - World and Commands now have `spawn_empty()`, which is equivalent to the old `spawn()` behavior. ## Migration Guide ```rust // Old (0.8): commands .spawn() .insert_bundle((A, B, C)); // New (0.9) commands.spawn((A, B, C)); // Old (0.8): commands.spawn_bundle((A, B, C)); // New (0.9) commands.spawn((A, B, C)); // Old (0.8): let entity = commands.spawn().id(); // New (0.9) let entity = commands.spawn_empty().id(); // Old (0.8) let entity = world.spawn().id(); // New (0.9) let entity = world.spawn_empty(); ```
210 lines
7.6 KiB
Rust
210 lines
7.6 KiB
Rust
//! This example illustrates how to run a winit window in a reactive, low power mode.
|
|
//!
|
|
//! This is useful for making desktop applications, or any other program that doesn't need to be
|
|
//! running the event loop non-stop.
|
|
|
|
use bevy::{
|
|
prelude::*,
|
|
utils::Duration,
|
|
window::{PresentMode, RequestRedraw},
|
|
winit::WinitSettings,
|
|
};
|
|
|
|
fn main() {
|
|
App::new()
|
|
// Continuous rendering for games - bevy's default.
|
|
.insert_resource(WinitSettings::game())
|
|
// Power-saving reactive rendering for applications.
|
|
.insert_resource(WinitSettings::desktop_app())
|
|
// You can also customize update behavior with the fields of [`WinitConfig`]
|
|
.insert_resource(WinitSettings {
|
|
focused_mode: bevy::winit::UpdateMode::Continuous,
|
|
unfocused_mode: bevy::winit::UpdateMode::ReactiveLowPower {
|
|
max_wait: Duration::from_millis(10),
|
|
},
|
|
..default()
|
|
})
|
|
// Turn off vsync to maximize CPU/GPU usage
|
|
.insert_resource(WindowDescriptor {
|
|
present_mode: PresentMode::AutoNoVsync,
|
|
..default()
|
|
})
|
|
.insert_resource(ExampleMode::Game)
|
|
.add_plugins(DefaultPlugins)
|
|
.add_startup_system(test_setup::setup)
|
|
.add_system(test_setup::cycle_modes)
|
|
.add_system(test_setup::rotate_cube)
|
|
.add_system(test_setup::update_text)
|
|
.add_system(update_winit)
|
|
.run();
|
|
}
|
|
|
|
#[derive(Resource, Debug)]
|
|
enum ExampleMode {
|
|
Game,
|
|
Application,
|
|
ApplicationWithRedraw,
|
|
}
|
|
|
|
/// Update winit based on the current `ExampleMode`
|
|
fn update_winit(
|
|
mode: Res<ExampleMode>,
|
|
mut event: EventWriter<RequestRedraw>,
|
|
mut winit_config: ResMut<WinitSettings>,
|
|
) {
|
|
use ExampleMode::*;
|
|
*winit_config = match *mode {
|
|
Game => {
|
|
// In the default `WinitConfig::game()` mode:
|
|
// * When focused: the event loop runs as fast as possible
|
|
// * When not focused: the event loop runs as fast as possible
|
|
WinitSettings::game()
|
|
}
|
|
Application => {
|
|
// While in `WinitConfig::desktop_app()` mode:
|
|
// * When focused: the app will update any time a winit event (e.g. the window is
|
|
// moved/resized, the mouse moves, a button is pressed, etc.), a [`RequestRedraw`]
|
|
// event is received, or after 5 seconds if the app has not updated.
|
|
// * When not focused: the app will update when the window is directly interacted with
|
|
// (e.g. the mouse hovers over a visible part of the out of focus window), a
|
|
// [`RequestRedraw`] event is received, or one minute has passed without the app
|
|
// updating.
|
|
WinitSettings::desktop_app()
|
|
}
|
|
ApplicationWithRedraw => {
|
|
// Sending a `RequestRedraw` event is useful when you want the app to update the next
|
|
// frame regardless of any user input. For example, your application might use
|
|
// `WinitConfig::desktop_app()` to reduce power use, but UI animations need to play even
|
|
// when there are no inputs, so you send redraw requests while the animation is playing.
|
|
event.send(RequestRedraw);
|
|
WinitSettings::desktop_app()
|
|
}
|
|
};
|
|
}
|
|
|
|
/// Everything in this module is for setting up and animating the scene, and is not important to the
|
|
/// demonstrated features.
|
|
pub(crate) mod test_setup {
|
|
use crate::ExampleMode;
|
|
use bevy::{prelude::*, window::RequestRedraw};
|
|
|
|
/// Switch between update modes when the mouse is clicked.
|
|
pub(crate) fn cycle_modes(
|
|
mut mode: ResMut<ExampleMode>,
|
|
mouse_button_input: Res<Input<KeyCode>>,
|
|
) {
|
|
if mouse_button_input.just_pressed(KeyCode::Space) {
|
|
*mode = match *mode {
|
|
ExampleMode::Game => ExampleMode::Application,
|
|
ExampleMode::Application => ExampleMode::ApplicationWithRedraw,
|
|
ExampleMode::ApplicationWithRedraw => ExampleMode::Game,
|
|
};
|
|
}
|
|
}
|
|
|
|
#[derive(Component)]
|
|
pub(crate) struct Rotator;
|
|
|
|
/// Rotate the cube to make it clear when the app is updating
|
|
pub(crate) fn rotate_cube(
|
|
time: Res<Time>,
|
|
mut cube_transform: Query<&mut Transform, With<Rotator>>,
|
|
) {
|
|
for mut transform in &mut cube_transform {
|
|
transform.rotate_x(time.delta_seconds());
|
|
transform.rotate_local_y(time.delta_seconds());
|
|
}
|
|
}
|
|
|
|
#[derive(Component)]
|
|
pub struct ModeText;
|
|
|
|
pub(crate) fn update_text(
|
|
mut frame: Local<usize>,
|
|
mode: Res<ExampleMode>,
|
|
mut query: Query<&mut Text, With<ModeText>>,
|
|
) {
|
|
*frame += 1;
|
|
let mode = match *mode {
|
|
ExampleMode::Game => "game(), continuous, default",
|
|
ExampleMode::Application => "desktop_app(), reactive",
|
|
ExampleMode::ApplicationWithRedraw => "desktop_app(), reactive, RequestRedraw sent",
|
|
};
|
|
let mut text = query.single_mut();
|
|
text.sections[1].value = mode.to_string();
|
|
text.sections[3].value = frame.to_string();
|
|
}
|
|
|
|
/// Set up a scene with a cube and some text
|
|
pub fn setup(
|
|
mut commands: Commands,
|
|
mut meshes: ResMut<Assets<Mesh>>,
|
|
mut materials: ResMut<Assets<StandardMaterial>>,
|
|
mut event: EventWriter<RequestRedraw>,
|
|
asset_server: Res<AssetServer>,
|
|
) {
|
|
commands.spawn((
|
|
PbrBundle {
|
|
mesh: meshes.add(Mesh::from(shape::Cube { size: 0.5 })),
|
|
material: materials.add(Color::rgb(0.8, 0.7, 0.6).into()),
|
|
..default()
|
|
},
|
|
Rotator,
|
|
));
|
|
commands.spawn(PointLightBundle {
|
|
point_light: PointLight {
|
|
intensity: 1500.0,
|
|
shadows_enabled: true,
|
|
..default()
|
|
},
|
|
transform: Transform::from_xyz(4.0, 8.0, 4.0),
|
|
..default()
|
|
});
|
|
commands.spawn(Camera3dBundle {
|
|
transform: Transform::from_xyz(-2.0, 2.0, 2.0).looking_at(Vec3::ZERO, Vec3::Y),
|
|
..default()
|
|
});
|
|
event.send(RequestRedraw);
|
|
commands.spawn((
|
|
TextBundle::from_sections([
|
|
TextSection::new(
|
|
"Press spacebar to cycle modes\n",
|
|
TextStyle {
|
|
font: asset_server.load("fonts/FiraSans-Bold.ttf"),
|
|
font_size: 50.0,
|
|
color: Color::WHITE,
|
|
},
|
|
),
|
|
TextSection::from_style(TextStyle {
|
|
font: asset_server.load("fonts/FiraSans-Bold.ttf"),
|
|
font_size: 50.0,
|
|
color: Color::GREEN,
|
|
}),
|
|
TextSection::new(
|
|
"\nFrame: ",
|
|
TextStyle {
|
|
font: asset_server.load("fonts/FiraSans-Bold.ttf"),
|
|
font_size: 50.0,
|
|
color: Color::YELLOW,
|
|
},
|
|
),
|
|
TextSection::from_style(TextStyle {
|
|
font: asset_server.load("fonts/FiraSans-Bold.ttf"),
|
|
font_size: 50.0,
|
|
color: Color::YELLOW,
|
|
}),
|
|
])
|
|
.with_style(Style {
|
|
align_self: AlignSelf::FlexStart,
|
|
position_type: PositionType::Absolute,
|
|
position: UiRect {
|
|
top: Val::Px(5.0),
|
|
left: Val::Px(5.0),
|
|
..default()
|
|
},
|
|
..default()
|
|
}),
|
|
ModeText,
|
|
));
|
|
}
|
|
}
|