mirror of
https://github.com/bevyengine/bevy
synced 2024-11-22 20:53:53 +00:00
599e5e4e76
# Objective - As part of the migration process we need to a) see the end effect of the migration on user ergonomics b) check for serious perf regressions c) actually migrate the code - To accomplish this, I'm going to attempt to migrate all of the remaining user-facing usages of `LegacyColor` in one PR, being careful to keep a clean commit history. - Fixes #12056. ## Solution I've chosen to use the polymorphic `Color` type as our standard user-facing API. - [x] Migrate `bevy_gizmos`. - [x] Take `impl Into<Color>` in all `bevy_gizmos` APIs - [x] Migrate sprites - [x] Migrate UI - [x] Migrate `ColorMaterial` - [x] Migrate `MaterialMesh2D` - [x] Migrate fog - [x] Migrate lights - [x] Migrate StandardMaterial - [x] Migrate wireframes - [x] Migrate clear color - [x] Migrate text - [x] Migrate gltf loader - [x] Register color types for reflection - [x] Remove `LegacyColor` - [x] Make sure CI passes Incidental improvements to ease migration: - added `Color::srgba_u8`, `Color::srgba_from_array` and friends - added `set_alpha`, `is_fully_transparent` and `is_fully_opaque` to the `Alpha` trait - add and immediately deprecate (lol) `Color::rgb` and friends in favor of more explicit and consistent `Color::srgb` - standardized on white and black for most example text colors - added vector field traits to `LinearRgba`: ~~`Add`, `Sub`, `AddAssign`, `SubAssign`,~~ `Mul<f32>` and `Div<f32>`. Multiplications and divisions do not scale alpha. `Add` and `Sub` have been cut from this PR. - added `LinearRgba` and `Srgba` `RED/GREEN/BLUE` - added `LinearRgba_to_f32_array` and `LinearRgba::to_u32` ## Migration Guide Bevy's color types have changed! Wherever you used a `bevy::render::Color`, a `bevy::color::Color` is used instead. These are quite similar! Both are enums storing a color in a specific color space (or to be more precise, using a specific color model). However, each of the different color models now has its own type. TODO... - `Color::rgba`, `Color::rgb`, `Color::rbga_u8`, `Color::rgb_u8`, `Color::rgb_from_array` are now `Color::srgba`, `Color::srgb`, `Color::srgba_u8`, `Color::srgb_u8` and `Color::srgb_from_array`. - `Color::set_a` and `Color::a` is now `Color::set_alpha` and `Color::alpha`. These are part of the `Alpha` trait in `bevy_color`. - `Color::is_fully_transparent` is now part of the `Alpha` trait in `bevy_color` - `Color::r`, `Color::set_r`, `Color::with_r` and the equivalents for `g`, `b` `h`, `s` and `l` have been removed due to causing silent relatively expensive conversions. Convert your `Color` into the desired color space, perform your operations there, and then convert it back into a polymorphic `Color` enum. - `Color::hex` is now `Srgba::hex`. Call `.into` or construct a `Color::Srgba` variant manually to convert it. - `WireframeMaterial`, `ExtractedUiNode`, `ExtractedDirectionalLight`, `ExtractedPointLight`, `ExtractedSpotLight` and `ExtractedSprite` now store a `LinearRgba`, rather than a polymorphic `Color` - `Color::rgb_linear` and `Color::rgba_linear` are now `Color::linear_rgb` and `Color::linear_rgba` - The various CSS color constants are no longer stored directly on `Color`. Instead, they're defined in the `Srgba` color space, and accessed via `bevy::color::palettes::css`. Call `.into()` on them to convert them into a `Color` for quick debugging use, and consider using the much prettier `tailwind` palette for prototyping. - The `LIME_GREEN` color has been renamed to `LIMEGREEN` to comply with the standard naming. - Vector field arithmetic operations on `Color` (add, subtract, multiply and divide by a f32) have been removed. Instead, convert your colors into `LinearRgba` space, and perform your operations explicitly there. This is particularly relevant when working with emissive or HDR colors, whose color channel values are routinely outside of the ordinary 0 to 1 range. - `Color::as_linear_rgba_f32` has been removed. Call `LinearRgba::to_f32_array` instead, converting if needed. - `Color::as_linear_rgba_u32` has been removed. Call `LinearRgba::to_u32` instead, converting if needed. - Several other color conversion methods to transform LCH or HSL colors into float arrays or `Vec` types have been removed. Please reimplement these externally or open a PR to re-add them if you found them particularly useful. - Various methods on `Color` such as `rgb` or `hsl` to convert the color into a specific color space have been removed. Convert into `LinearRgba`, then to the color space of your choice. - Various implicitly-converting color value methods on `Color` such as `r`, `g`, `b` or `h` have been removed. Please convert it into the color space of your choice, then check these properties. - `Color` no longer implements `AsBindGroup`. Store a `LinearRgba` internally instead to avoid conversion costs. --------- Co-authored-by: Alice Cecile <alice.i.cecil@gmail.com> Co-authored-by: Afonso Lage <lage.afonso@gmail.com> Co-authored-by: Rob Parrett <robparrett@gmail.com> Co-authored-by: Zachary Harrold <zac@harrold.com.au>
131 lines
4.2 KiB
Rust
131 lines
4.2 KiB
Rust
//! Renders a lot of sprites to allow performance testing.
|
|
//! See <https://github.com/bevyengine/bevy/pull/1492>
|
|
//!
|
|
//! This example sets up many sprites in different sizes, rotations, and scales in the world.
|
|
//! It also moves the camera over them to see how well frustum culling works.
|
|
//!
|
|
//! Add the `--colored` arg to run with color tinted sprites. This will cause the sprites to be rendered
|
|
//! in multiple batches, reducing performance but useful for testing.
|
|
|
|
use bevy::{
|
|
color::palettes::css::*,
|
|
diagnostic::{FrameTimeDiagnosticsPlugin, LogDiagnosticsPlugin},
|
|
prelude::*,
|
|
window::{PresentMode, WindowPlugin, WindowResolution},
|
|
winit::{UpdateMode, WinitSettings},
|
|
};
|
|
|
|
use rand::Rng;
|
|
|
|
const CAMERA_SPEED: f32 = 1000.0;
|
|
|
|
const COLORS: [Color; 3] = [Color::Srgba(BLUE), Color::Srgba(WHITE), Color::Srgba(RED)];
|
|
|
|
#[derive(Resource)]
|
|
struct ColorTint(bool);
|
|
|
|
fn main() {
|
|
App::new()
|
|
.insert_resource(ColorTint(
|
|
std::env::args().nth(1).unwrap_or_default() == "--colored",
|
|
))
|
|
// Since this is also used as a benchmark, we want it to display performance data.
|
|
.add_plugins((
|
|
LogDiagnosticsPlugin::default(),
|
|
FrameTimeDiagnosticsPlugin,
|
|
DefaultPlugins.set(WindowPlugin {
|
|
primary_window: Some(Window {
|
|
present_mode: PresentMode::AutoNoVsync,
|
|
resolution: WindowResolution::new(1920.0, 1080.0)
|
|
.with_scale_factor_override(1.0),
|
|
..default()
|
|
}),
|
|
..default()
|
|
}),
|
|
))
|
|
.insert_resource(WinitSettings {
|
|
focused_mode: UpdateMode::Continuous,
|
|
unfocused_mode: UpdateMode::Continuous,
|
|
})
|
|
.add_systems(Startup, setup)
|
|
.add_systems(
|
|
Update,
|
|
(print_sprite_count, move_camera.after(print_sprite_count)),
|
|
)
|
|
.run();
|
|
}
|
|
|
|
fn setup(mut commands: Commands, assets: Res<AssetServer>, color_tint: Res<ColorTint>) {
|
|
warn!(include_str!("warning_string.txt"));
|
|
|
|
let mut rng = rand::thread_rng();
|
|
|
|
let tile_size = Vec2::splat(64.0);
|
|
let map_size = Vec2::splat(320.0);
|
|
|
|
let half_x = (map_size.x / 2.0) as i32;
|
|
let half_y = (map_size.y / 2.0) as i32;
|
|
|
|
let sprite_handle = assets.load("branding/icon.png");
|
|
|
|
// Spawns the camera
|
|
|
|
commands.spawn(Camera2dBundle::default());
|
|
|
|
// Builds and spawns the sprites
|
|
let mut sprites = vec![];
|
|
for y in -half_y..half_y {
|
|
for x in -half_x..half_x {
|
|
let position = Vec2::new(x as f32, y as f32);
|
|
let translation = (position * tile_size).extend(rng.gen::<f32>());
|
|
let rotation = Quat::from_rotation_z(rng.gen::<f32>());
|
|
let scale = Vec3::splat(rng.gen::<f32>() * 2.0);
|
|
|
|
sprites.push(SpriteBundle {
|
|
texture: sprite_handle.clone(),
|
|
transform: Transform {
|
|
translation,
|
|
rotation,
|
|
scale,
|
|
},
|
|
sprite: Sprite {
|
|
custom_size: Some(tile_size),
|
|
color: if color_tint.0 {
|
|
COLORS[rng.gen_range(0..3)]
|
|
} else {
|
|
Color::WHITE
|
|
},
|
|
..default()
|
|
},
|
|
..default()
|
|
});
|
|
}
|
|
}
|
|
commands.spawn_batch(sprites);
|
|
}
|
|
|
|
// System for rotating and translating the camera
|
|
fn move_camera(time: Res<Time>, mut camera_query: Query<&mut Transform, With<Camera>>) {
|
|
let mut camera_transform = camera_query.single_mut();
|
|
camera_transform.rotate_z(time.delta_seconds() * 0.5);
|
|
*camera_transform = *camera_transform
|
|
* Transform::from_translation(Vec3::X * CAMERA_SPEED * time.delta_seconds());
|
|
}
|
|
|
|
#[derive(Deref, DerefMut)]
|
|
struct PrintingTimer(Timer);
|
|
|
|
impl Default for PrintingTimer {
|
|
fn default() -> Self {
|
|
Self(Timer::from_seconds(1.0, TimerMode::Repeating))
|
|
}
|
|
}
|
|
|
|
// System for printing the number of sprites on every tick of the timer
|
|
fn print_sprite_count(time: Res<Time>, mut timer: Local<PrintingTimer>, sprites: Query<&Sprite>) {
|
|
timer.tick(time.delta());
|
|
|
|
if timer.just_finished() {
|
|
info!("Sprites: {}", sprites.iter().count());
|
|
}
|
|
}
|