bevy/examples/app/log_layers_ecs.rs
Carter Anderson 015f2c69ca
Merge Style properties into Node. Use ComputedNode for computed properties. (#15975)
# Objective

Continue improving the user experience of our UI Node API in the
direction specified by [Bevy's Next Generation Scene / UI
System](https://github.com/bevyengine/bevy/discussions/14437)

## Solution

As specified in the document above, merge `Style` fields into `Node`,
and move "computed Node fields" into `ComputedNode` (I chose this name
over something like `ComputedNodeLayout` because it currently contains
more than just layout info. If we want to break this up / rename these
concepts, lets do that in a separate PR). `Style` has been removed.

This accomplishes a number of goals:

## Ergonomics wins

Specifying both `Node` and `Style` is now no longer required for
non-default styles

Before:
```rust
commands.spawn((
    Node::default(),
    Style {
        width:  Val::Px(100.),
        ..default()
    },
));
```

After:

```rust
commands.spawn(Node {
    width:  Val::Px(100.),
    ..default()
});
```

## Conceptual clarity

`Style` was never a comprehensive "style sheet". It only defined "core"
style properties that all `Nodes` shared. Any "styled property" that
couldn't fit that mold had to be in a separate component. A "real" style
system would style properties _across_ components (`Node`, `Button`,
etc). We have plans to build a true style system (see the doc linked
above).

By moving the `Style` fields to `Node`, we fully embrace `Node` as the
driving concept and remove the "style system" confusion.

## Next Steps

* Consider identifying and splitting out "style properties that aren't
core to Node". This should not happen for Bevy 0.15.

---

## Migration Guide

Move any fields set on `Style` into `Node` and replace all `Style`
component usage with `Node`.

Before:
```rust
commands.spawn((
    Node::default(),
    Style {
        width:  Val::Px(100.),
        ..default()
    },
));
```

After:

```rust
commands.spawn(Node {
    width:  Val::Px(100.),
    ..default()
});
```

For any usage of the "computed node properties" that used to live on
`Node`, use `ComputedNode` instead:

Before:
```rust
fn system(nodes: Query<&Node>) {
    for node in &nodes {
        let computed_size = node.size();
    }
}
```

After:
```rust
fn system(computed_nodes: Query<&ComputedNode>) {
    for computed_node in &computed_nodes {
        let computed_size = computed_node.size();
    }
}
```
2024-10-18 22:25:33 +00:00

171 lines
5.9 KiB
Rust

//! This example illustrates how to transfer log events from the [`Layer`] to Bevy's ECS.
//!
//! The way we will do this is via a [`mpsc`] channel. [`mpsc`] channels allow 2 unrelated
//! parts of the program to communicate (in this case, [`Layer`]s and Bevy's ECS).
//!
//! Inside the `custom_layer` function we will create a [`mpsc::Sender`] and a [`mpsc::Receiver`] from a
//! [`mpsc::channel`]. The [`Sender`](mpsc::Sender) will go into the `AdvancedLayer` and the [`Receiver`](mpsc::Receiver) will
//! go into a non-send resource called `LogEvents` (It has to be non-send because [`Receiver`](mpsc::Receiver) is [`!Sync`](Sync)).
//! From there we will use `transfer_log_events` to transfer log events from `LogEvents` to an ECS event called `LogEvent`.
//!
//! Finally, after all that we can access the `LogEvent` event from our systems and use it.
//! In this example we build a simple log viewer.
use std::sync::mpsc;
use bevy::{
log::{
tracing_subscriber::{self, Layer},
BoxedLayer, Level,
},
prelude::*,
utils::tracing::{self, Subscriber},
};
fn main() {
App::new()
.add_plugins(DefaultPlugins.set(bevy::log::LogPlugin {
// Show logs all the way up to the trace level, but only for logs
// produced by this example.
level: Level::TRACE,
filter: "warn,log_layers_ecs=trace".to_string(),
custom_layer,
}))
.add_systems(Startup, (log_system, setup))
.add_systems(Update, print_logs)
.run();
}
/// A basic message. This is what we will be sending from the [`CaptureLayer`] to [`CapturedLogEvents`] non-send resource.
#[derive(Debug, Event)]
struct LogEvent {
message: String,
level: Level,
}
/// This non-send resource temporarily stores [`LogEvent`]s before they are
/// written to [`Events<LogEvent>`] by [`transfer_log_events`].
#[derive(Deref, DerefMut)]
struct CapturedLogEvents(mpsc::Receiver<LogEvent>);
/// Transfers information from the `LogEvents` resource to [`Events<LogEvent>`](LogEvent).
fn transfer_log_events(
receiver: NonSend<CapturedLogEvents>,
mut log_events: EventWriter<LogEvent>,
) {
// Make sure to use `try_iter()` and not `iter()` to prevent blocking.
log_events.send_batch(receiver.try_iter());
}
/// This is the [`Layer`] that we will use to capture log events and then send them to Bevy's
/// ECS via it's [`mpsc::Sender`].
struct CaptureLayer {
sender: mpsc::Sender<LogEvent>,
}
impl<S: Subscriber> Layer<S> for CaptureLayer {
fn on_event(
&self,
event: &tracing::Event<'_>,
_ctx: tracing_subscriber::layer::Context<'_, S>,
) {
// In order to obtain the log message, we have to create a struct that implements
// Visit and holds a reference to our string. Then we use the `record` method and
// the struct to modify the reference to hold the message string.
let mut message = None;
event.record(&mut CaptureLayerVisitor(&mut message));
if let Some(message) = message {
let metadata = event.metadata();
self.sender
.send(LogEvent {
message,
level: *metadata.level(),
})
.expect("LogEvents resource no longer exists!");
}
}
}
/// A [`Visit`](tracing::field::Visit)or that records log messages that are transferred to [`CaptureLayer`].
struct CaptureLayerVisitor<'a>(&'a mut Option<String>);
impl tracing::field::Visit for CaptureLayerVisitor<'_> {
fn record_debug(&mut self, field: &tracing::field::Field, value: &dyn std::fmt::Debug) {
// This if statement filters out unneeded events sometimes show up
if field.name() == "message" {
*self.0 = Some(format!("{value:?}"));
}
}
}
fn custom_layer(app: &mut App) -> Option<BoxedLayer> {
let (sender, receiver) = mpsc::channel();
let layer = CaptureLayer { sender };
let resource = CapturedLogEvents(receiver);
app.insert_non_send_resource(resource);
app.add_event::<LogEvent>();
app.add_systems(Update, transfer_log_events);
Some(layer.boxed())
}
fn log_system() {
// Here is how you write new logs at each "log level" (in "most important" to
// "least important" order)
error!("Something failed");
warn!("Something bad happened that isn't a failure, but thats worth calling out");
info!("Helpful information that is worth printing by default");
debug!("Helpful for debugging");
trace!("Very noisy");
}
#[derive(Component)]
struct LogViewerRoot;
fn setup(mut commands: Commands) {
commands.spawn(Camera2d);
commands.spawn((
Node {
width: Val::Vw(100.0),
height: Val::Vh(100.0),
flex_direction: FlexDirection::Column,
padding: UiRect::all(Val::Px(12.)),
..default()
},
LogViewerRoot,
));
}
// This is how we can read our LogEvents.
// In this example we are reading the LogEvents and inserting them as text into our log viewer.
fn print_logs(
mut events: EventReader<LogEvent>,
mut commands: Commands,
log_viewer_root: Single<Entity, With<LogViewerRoot>>,
) {
let root_entity = *log_viewer_root;
commands.entity(root_entity).with_children(|child| {
for event in events.read() {
child.spawn(Text::default()).with_children(|child| {
child.spawn((
TextSpan::new(format!("{:5} ", event.level)),
TextColor(level_color(&event.level)),
));
child.spawn(TextSpan::new(&event.message));
});
}
});
}
fn level_color(level: &Level) -> Color {
use bevy::color::palettes::tailwind::*;
Color::from(match *level {
Level::WARN => ORANGE_400,
Level::ERROR => RED_400,
Level::INFO => GREEN_400,
Level::TRACE => PURPLE_400,
Level::DEBUG => BLUE_400,
})
}