bevy/crates/bevy_pbr/src/render/mesh.rs
Patrick Walton 44a9a4cc86
Import the second UV map if present in glTF files. (#9992)
Conventionally, the second UV map (`TEXCOORD1`, `UV1`) is used for
lightmap UVs. This commit allows Bevy to import them, so that a custom
shader that applies lightmaps can use those UVs if desired.

Note that this doesn't actually apply lightmaps to Bevy meshes; that
will be a followup. It does, however, open the door to future Bevy
plugins that implement baked global illumination.

## Changelog

### Added

The Bevy glTF loader now imports a second UV channel (`TEXCOORD1`,
`UV1`) from meshes if present. This can be used by custom shaders to
implement lightmapping.
2023-10-02 21:07:03 +00:00

1369 lines
53 KiB
Rust

use crate::{
environment_map, prepass, EnvironmentMapLight, FogMeta, GlobalLightMeta, GpuFog, GpuLights,
GpuPointLights, LightMeta, MaterialBindGroupId, NotShadowCaster, NotShadowReceiver,
PreviousGlobalTransform, ScreenSpaceAmbientOcclusionTextures, Shadow, ShadowSamplers,
ViewClusterBindings, ViewFogUniformOffset, ViewLightsUniformOffset, ViewShadowBindings,
CLUSTERED_FORWARD_STORAGE_BUFFER_COUNT, MAX_CASCADES_PER_LIGHT, MAX_DIRECTIONAL_LIGHTS,
};
use bevy_app::{Plugin, PostUpdate};
use bevy_asset::{load_internal_asset, AssetId, Handle};
use bevy_core_pipeline::{
core_3d::{AlphaMask3d, Opaque3d, Transparent3d},
prepass::ViewPrepassTextures,
tonemapping::{
get_lut_bind_group_layout_entries, get_lut_bindings, Tonemapping, TonemappingLuts,
},
};
use bevy_derive::{Deref, DerefMut};
use bevy_ecs::{
prelude::*,
query::{QueryItem, ROQueryItem},
system::{lifetimeless::*, SystemParamItem, SystemState},
};
use bevy_math::{Affine3, Vec2, Vec4};
use bevy_render::{
batching::{
batch_and_prepare_render_phase, write_batched_instance_buffer, GetBatchData,
NoAutomaticBatching,
},
globals::{GlobalsBuffer, GlobalsUniform},
mesh::{
GpuBufferInfo, InnerMeshVertexBufferLayout, Mesh, MeshVertexBufferLayout,
VertexAttributeDescriptor,
},
prelude::Msaa,
render_asset::RenderAssets,
render_phase::{PhaseItem, RenderCommand, RenderCommandResult, TrackedRenderPass},
render_resource::*,
renderer::{RenderDevice, RenderQueue},
texture::{
BevyDefault, DefaultImageSampler, FallbackImageCubemap, FallbackImagesDepth,
FallbackImagesMsaa, GpuImage, Image, ImageSampler, TextureFormatPixelInfo,
},
view::{ViewTarget, ViewUniform, ViewUniformOffset, ViewUniforms, ViewVisibility},
Extract, ExtractSchedule, Render, RenderApp, RenderSet,
};
use bevy_transform::components::GlobalTransform;
use bevy_utils::{tracing::error, EntityHashMap, HashMap, Hashed};
use std::cell::Cell;
use thread_local::ThreadLocal;
use crate::render::{
morph::{
extract_morphs, no_automatic_morph_batching, prepare_morphs, MorphIndices, MorphUniform,
},
skin::{extract_skins, no_automatic_skin_batching, prepare_skins, SkinUniform},
MeshLayouts,
};
use super::skin::SkinIndices;
#[derive(Default)]
pub struct MeshRenderPlugin;
pub const MESH_VERTEX_OUTPUT: Handle<Shader> = Handle::weak_from_u128(2645551199423808407);
pub const MESH_VIEW_TYPES_HANDLE: Handle<Shader> = Handle::weak_from_u128(8140454348013264787);
pub const MESH_VIEW_BINDINGS_HANDLE: Handle<Shader> = Handle::weak_from_u128(9076678235888822571);
pub const MESH_TYPES_HANDLE: Handle<Shader> = Handle::weak_from_u128(2506024101911992377);
pub const MESH_BINDINGS_HANDLE: Handle<Shader> = Handle::weak_from_u128(16831548636314682308);
pub const MESH_FUNCTIONS_HANDLE: Handle<Shader> = Handle::weak_from_u128(6300874327833745635);
pub const MESH_SHADER_HANDLE: Handle<Shader> = Handle::weak_from_u128(3252377289100772450);
pub const SKINNING_HANDLE: Handle<Shader> = Handle::weak_from_u128(13215291596265391738);
pub const MORPH_HANDLE: Handle<Shader> = Handle::weak_from_u128(970982813587607345);
impl Plugin for MeshRenderPlugin {
fn build(&self, app: &mut bevy_app::App) {
load_internal_asset!(
app,
MESH_VERTEX_OUTPUT,
"mesh_vertex_output.wgsl",
Shader::from_wgsl
);
load_internal_asset!(
app,
MESH_VIEW_TYPES_HANDLE,
"mesh_view_types.wgsl",
Shader::from_wgsl_with_defs,
vec![
ShaderDefVal::UInt(
"MAX_DIRECTIONAL_LIGHTS".into(),
MAX_DIRECTIONAL_LIGHTS as u32
),
ShaderDefVal::UInt(
"MAX_CASCADES_PER_LIGHT".into(),
MAX_CASCADES_PER_LIGHT as u32,
)
]
);
load_internal_asset!(
app,
MESH_VIEW_BINDINGS_HANDLE,
"mesh_view_bindings.wgsl",
Shader::from_wgsl
);
load_internal_asset!(app, MESH_TYPES_HANDLE, "mesh_types.wgsl", Shader::from_wgsl);
load_internal_asset!(
app,
MESH_FUNCTIONS_HANDLE,
"mesh_functions.wgsl",
Shader::from_wgsl
);
load_internal_asset!(app, MESH_SHADER_HANDLE, "mesh.wgsl", Shader::from_wgsl);
load_internal_asset!(app, SKINNING_HANDLE, "skinning.wgsl", Shader::from_wgsl);
load_internal_asset!(app, MORPH_HANDLE, "morph.wgsl", Shader::from_wgsl);
app.add_systems(
PostUpdate,
(no_automatic_skin_batching, no_automatic_morph_batching),
);
if let Ok(render_app) = app.get_sub_app_mut(RenderApp) {
render_app
.init_resource::<RenderMeshInstances>()
.init_resource::<MeshBindGroups>()
.init_resource::<SkinUniform>()
.init_resource::<SkinIndices>()
.init_resource::<MorphUniform>()
.init_resource::<MorphIndices>()
.add_systems(
ExtractSchedule,
(extract_meshes, extract_skins, extract_morphs),
)
.add_systems(
Render,
(
(
batch_and_prepare_render_phase::<Opaque3d, MeshPipeline>,
batch_and_prepare_render_phase::<Transparent3d, MeshPipeline>,
batch_and_prepare_render_phase::<AlphaMask3d, MeshPipeline>,
batch_and_prepare_render_phase::<Shadow, MeshPipeline>,
)
.in_set(RenderSet::PrepareResources),
write_batched_instance_buffer::<MeshPipeline>
.in_set(RenderSet::PrepareResourcesFlush),
prepare_skins.in_set(RenderSet::PrepareResources),
prepare_morphs.in_set(RenderSet::PrepareResources),
prepare_mesh_bind_group.in_set(RenderSet::PrepareBindGroups),
prepare_mesh_view_bind_groups.in_set(RenderSet::PrepareBindGroups),
),
);
}
}
fn finish(&self, app: &mut bevy_app::App) {
let mut mesh_bindings_shader_defs = Vec::with_capacity(1);
if let Ok(render_app) = app.get_sub_app_mut(RenderApp) {
if let Some(per_object_buffer_batch_size) = GpuArrayBuffer::<MeshUniform>::batch_size(
render_app.world.resource::<RenderDevice>(),
) {
mesh_bindings_shader_defs.push(ShaderDefVal::UInt(
"PER_OBJECT_BUFFER_BATCH_SIZE".into(),
per_object_buffer_batch_size,
));
}
render_app
.insert_resource(GpuArrayBuffer::<MeshUniform>::new(
render_app.world.resource::<RenderDevice>(),
))
.init_resource::<MeshPipeline>();
}
// Load the mesh_bindings shader module here as it depends on runtime information about
// whether storage buffers are supported, or the maximum uniform buffer binding size.
load_internal_asset!(
app,
MESH_BINDINGS_HANDLE,
"mesh_bindings.wgsl",
Shader::from_wgsl_with_defs,
mesh_bindings_shader_defs
);
}
}
#[derive(Component)]
pub struct MeshTransforms {
pub transform: Affine3,
pub previous_transform: Affine3,
pub flags: u32,
}
#[derive(ShaderType, Clone)]
pub struct MeshUniform {
// Affine 4x3 matrices transposed to 3x4
pub transform: [Vec4; 3],
pub previous_transform: [Vec4; 3],
// 3x3 matrix packed in mat2x4 and f32 as:
// [0].xyz, [1].x,
// [1].yz, [2].xy
// [2].z
pub inverse_transpose_model_a: [Vec4; 2],
pub inverse_transpose_model_b: f32,
pub flags: u32,
}
impl From<&MeshTransforms> for MeshUniform {
fn from(mesh_transforms: &MeshTransforms) -> Self {
let (inverse_transpose_model_a, inverse_transpose_model_b) =
mesh_transforms.transform.inverse_transpose_3x3();
Self {
transform: mesh_transforms.transform.to_transpose(),
previous_transform: mesh_transforms.previous_transform.to_transpose(),
inverse_transpose_model_a,
inverse_transpose_model_b,
flags: mesh_transforms.flags,
}
}
}
// NOTE: These must match the bit flags in bevy_pbr/src/render/mesh_types.wgsl!
bitflags::bitflags! {
#[repr(transparent)]
pub struct MeshFlags: u32 {
const SHADOW_RECEIVER = (1 << 0);
// Indicates the sign of the determinant of the 3x3 model matrix. If the sign is positive,
// then the flag should be set, else it should not be set.
const SIGN_DETERMINANT_MODEL_3X3 = (1 << 31);
const NONE = 0;
const UNINITIALIZED = 0xFFFF;
}
}
pub struct RenderMeshInstance {
pub transforms: MeshTransforms,
pub mesh_asset_id: AssetId<Mesh>,
pub material_bind_group_id: MaterialBindGroupId,
pub shadow_caster: bool,
pub automatic_batching: bool,
}
#[derive(Default, Resource, Deref, DerefMut)]
pub struct RenderMeshInstances(EntityHashMap<Entity, RenderMeshInstance>);
#[derive(Component)]
pub struct Mesh3d;
pub fn extract_meshes(
mut commands: Commands,
mut previous_len: Local<usize>,
mut render_mesh_instances: ResMut<RenderMeshInstances>,
mut thread_local_queues: Local<ThreadLocal<Cell<Vec<(Entity, RenderMeshInstance)>>>>,
meshes_query: Extract<
Query<(
Entity,
&ViewVisibility,
&GlobalTransform,
Option<&PreviousGlobalTransform>,
&Handle<Mesh>,
Has<NotShadowReceiver>,
Has<NotShadowCaster>,
Has<NoAutomaticBatching>,
)>,
>,
) {
meshes_query.par_iter().for_each(
|(
entity,
view_visibility,
transform,
previous_transform,
handle,
not_receiver,
not_caster,
no_automatic_batching,
)| {
if !view_visibility.get() {
return;
}
let transform = transform.affine();
let previous_transform = previous_transform.map(|t| t.0).unwrap_or(transform);
let mut flags = if not_receiver {
MeshFlags::empty()
} else {
MeshFlags::SHADOW_RECEIVER
};
if transform.matrix3.determinant().is_sign_positive() {
flags |= MeshFlags::SIGN_DETERMINANT_MODEL_3X3;
}
let transforms = MeshTransforms {
transform: (&transform).into(),
previous_transform: (&previous_transform).into(),
flags: flags.bits(),
};
let tls = thread_local_queues.get_or_default();
let mut queue = tls.take();
queue.push((
entity,
RenderMeshInstance {
mesh_asset_id: handle.id(),
transforms,
shadow_caster: !not_caster,
material_bind_group_id: MaterialBindGroupId::default(),
automatic_batching: !no_automatic_batching,
},
));
tls.set(queue);
},
);
render_mesh_instances.clear();
let mut entities = Vec::with_capacity(*previous_len);
for queue in thread_local_queues.iter_mut() {
// FIXME: Remove this - it is just a workaround to enable rendering to work as
// render commands require an entity to exist at the moment.
entities.extend(queue.get_mut().iter().map(|(e, _)| (*e, Mesh3d)));
render_mesh_instances.extend(queue.get_mut().drain(..));
}
*previous_len = entities.len();
commands.insert_or_spawn_batch(entities);
}
#[derive(Resource, Clone)]
pub struct MeshPipeline {
pub view_layout: BindGroupLayout,
pub view_layout_multisampled: BindGroupLayout,
// This dummy white texture is to be used in place of optional StandardMaterial textures
pub dummy_white_gpu_image: GpuImage,
pub clustered_forward_buffer_binding_type: BufferBindingType,
pub mesh_layouts: MeshLayouts,
/// `MeshUniform`s are stored in arrays in buffers. If storage buffers are available, they
/// are used and this will be `None`, otherwise uniform buffers will be used with batches
/// of this many `MeshUniform`s, stored at dynamic offsets within the uniform buffer.
/// Use code like this in custom shaders:
/// ```wgsl
/// ##ifdef PER_OBJECT_BUFFER_BATCH_SIZE
/// @group(2) @binding(0) var<uniform> mesh: array<Mesh, #{PER_OBJECT_BUFFER_BATCH_SIZE}u>;
/// ##else
/// @group(2) @binding(0) var<storage> mesh: array<Mesh>;
/// ##endif // PER_OBJECT_BUFFER_BATCH_SIZE
/// ```
pub per_object_buffer_batch_size: Option<u32>,
}
impl FromWorld for MeshPipeline {
fn from_world(world: &mut World) -> Self {
let mut system_state: SystemState<(
Res<RenderDevice>,
Res<DefaultImageSampler>,
Res<RenderQueue>,
)> = SystemState::new(world);
let (render_device, default_sampler, render_queue) = system_state.get_mut(world);
let clustered_forward_buffer_binding_type = render_device
.get_supported_read_only_binding_type(CLUSTERED_FORWARD_STORAGE_BUFFER_COUNT);
/// Returns the appropriate bind group layout vec based on the parameters
fn layout_entries(
clustered_forward_buffer_binding_type: BufferBindingType,
multisampled: bool,
) -> Vec<BindGroupLayoutEntry> {
let mut entries = vec![
// View
BindGroupLayoutEntry {
binding: 0,
visibility: ShaderStages::VERTEX | ShaderStages::FRAGMENT,
ty: BindingType::Buffer {
ty: BufferBindingType::Uniform,
has_dynamic_offset: true,
min_binding_size: Some(ViewUniform::min_size()),
},
count: None,
},
// Lights
BindGroupLayoutEntry {
binding: 1,
visibility: ShaderStages::FRAGMENT,
ty: BindingType::Buffer {
ty: BufferBindingType::Uniform,
has_dynamic_offset: true,
min_binding_size: Some(GpuLights::min_size()),
},
count: None,
},
// Point Shadow Texture Cube Array
BindGroupLayoutEntry {
binding: 2,
visibility: ShaderStages::FRAGMENT,
ty: BindingType::Texture {
multisampled: false,
sample_type: TextureSampleType::Depth,
#[cfg(any(not(feature = "webgl"), not(target_arch = "wasm32")))]
view_dimension: TextureViewDimension::CubeArray,
#[cfg(all(feature = "webgl", target_arch = "wasm32"))]
view_dimension: TextureViewDimension::Cube,
},
count: None,
},
// Point Shadow Texture Array Sampler
BindGroupLayoutEntry {
binding: 3,
visibility: ShaderStages::FRAGMENT,
ty: BindingType::Sampler(SamplerBindingType::Comparison),
count: None,
},
// Directional Shadow Texture Array
BindGroupLayoutEntry {
binding: 4,
visibility: ShaderStages::FRAGMENT,
ty: BindingType::Texture {
multisampled: false,
sample_type: TextureSampleType::Depth,
#[cfg(any(not(feature = "webgl"), not(target_arch = "wasm32")))]
view_dimension: TextureViewDimension::D2Array,
#[cfg(all(feature = "webgl", target_arch = "wasm32"))]
view_dimension: TextureViewDimension::D2,
},
count: None,
},
// Directional Shadow Texture Array Sampler
BindGroupLayoutEntry {
binding: 5,
visibility: ShaderStages::FRAGMENT,
ty: BindingType::Sampler(SamplerBindingType::Comparison),
count: None,
},
// PointLights
BindGroupLayoutEntry {
binding: 6,
visibility: ShaderStages::FRAGMENT,
ty: BindingType::Buffer {
ty: clustered_forward_buffer_binding_type,
has_dynamic_offset: false,
min_binding_size: Some(GpuPointLights::min_size(
clustered_forward_buffer_binding_type,
)),
},
count: None,
},
// ClusteredLightIndexLists
BindGroupLayoutEntry {
binding: 7,
visibility: ShaderStages::FRAGMENT,
ty: BindingType::Buffer {
ty: clustered_forward_buffer_binding_type,
has_dynamic_offset: false,
min_binding_size: Some(
ViewClusterBindings::min_size_cluster_light_index_lists(
clustered_forward_buffer_binding_type,
),
),
},
count: None,
},
// ClusterOffsetsAndCounts
BindGroupLayoutEntry {
binding: 8,
visibility: ShaderStages::FRAGMENT,
ty: BindingType::Buffer {
ty: clustered_forward_buffer_binding_type,
has_dynamic_offset: false,
min_binding_size: Some(
ViewClusterBindings::min_size_cluster_offsets_and_counts(
clustered_forward_buffer_binding_type,
),
),
},
count: None,
},
// Globals
BindGroupLayoutEntry {
binding: 9,
visibility: ShaderStages::VERTEX_FRAGMENT,
ty: BindingType::Buffer {
ty: BufferBindingType::Uniform,
has_dynamic_offset: false,
min_binding_size: Some(GlobalsUniform::min_size()),
},
count: None,
},
// Fog
BindGroupLayoutEntry {
binding: 10,
visibility: ShaderStages::FRAGMENT,
ty: BindingType::Buffer {
ty: BufferBindingType::Uniform,
has_dynamic_offset: true,
min_binding_size: Some(GpuFog::min_size()),
},
count: None,
},
// Screen space ambient occlusion texture
BindGroupLayoutEntry {
binding: 11,
visibility: ShaderStages::FRAGMENT,
ty: BindingType::Texture {
multisampled: false,
sample_type: TextureSampleType::Float { filterable: false },
view_dimension: TextureViewDimension::D2,
},
count: None,
},
];
// EnvironmentMapLight
let environment_map_entries =
environment_map::get_bind_group_layout_entries([12, 13, 14]);
entries.extend_from_slice(&environment_map_entries);
// Tonemapping
let tonemapping_lut_entries = get_lut_bind_group_layout_entries([15, 16]);
entries.extend_from_slice(&tonemapping_lut_entries);
if cfg!(any(not(feature = "webgl"), not(target_arch = "wasm32")))
|| (cfg!(all(feature = "webgl", target_arch = "wasm32")) && !multisampled)
{
entries.extend_from_slice(&prepass::get_bind_group_layout_entries(
[17, 18, 19],
multisampled,
));
}
entries
}
let view_layout = render_device.create_bind_group_layout(&BindGroupLayoutDescriptor {
label: Some("mesh_view_layout"),
entries: &layout_entries(clustered_forward_buffer_binding_type, false),
});
let view_layout_multisampled =
render_device.create_bind_group_layout(&BindGroupLayoutDescriptor {
label: Some("mesh_view_layout_multisampled"),
entries: &layout_entries(clustered_forward_buffer_binding_type, true),
});
// A 1x1x1 'all 1.0' texture to use as a dummy texture to use in place of optional StandardMaterial textures
let dummy_white_gpu_image = {
let image = Image::default();
let texture = render_device.create_texture(&image.texture_descriptor);
let sampler = match image.sampler_descriptor {
ImageSampler::Default => (**default_sampler).clone(),
ImageSampler::Descriptor(descriptor) => render_device.create_sampler(&descriptor),
};
let format_size = image.texture_descriptor.format.pixel_size();
render_queue.write_texture(
ImageCopyTexture {
texture: &texture,
mip_level: 0,
origin: Origin3d::ZERO,
aspect: TextureAspect::All,
},
&image.data,
ImageDataLayout {
offset: 0,
bytes_per_row: Some(image.texture_descriptor.size.width * format_size as u32),
rows_per_image: None,
},
image.texture_descriptor.size,
);
let texture_view = texture.create_view(&TextureViewDescriptor::default());
GpuImage {
texture,
texture_view,
texture_format: image.texture_descriptor.format,
sampler,
size: Vec2::new(
image.texture_descriptor.size.width as f32,
image.texture_descriptor.size.height as f32,
),
mip_level_count: image.texture_descriptor.mip_level_count,
}
};
MeshPipeline {
view_layout,
view_layout_multisampled,
clustered_forward_buffer_binding_type,
dummy_white_gpu_image,
mesh_layouts: MeshLayouts::new(&render_device),
per_object_buffer_batch_size: GpuArrayBuffer::<MeshUniform>::batch_size(&render_device),
}
}
}
impl MeshPipeline {
pub fn get_image_texture<'a>(
&'a self,
gpu_images: &'a RenderAssets<Image>,
handle_option: &Option<Handle<Image>>,
) -> Option<(&'a TextureView, &'a Sampler)> {
if let Some(handle) = handle_option {
let gpu_image = gpu_images.get(handle)?;
Some((&gpu_image.texture_view, &gpu_image.sampler))
} else {
Some((
&self.dummy_white_gpu_image.texture_view,
&self.dummy_white_gpu_image.sampler,
))
}
}
}
impl GetBatchData for MeshPipeline {
type Param = SRes<RenderMeshInstances>;
type Query = Entity;
type QueryFilter = With<Mesh3d>;
type CompareData = (MaterialBindGroupId, AssetId<Mesh>);
type BufferData = MeshUniform;
fn get_batch_data(
mesh_instances: &SystemParamItem<Self::Param>,
entity: &QueryItem<Self::Query>,
) -> (Self::BufferData, Option<Self::CompareData>) {
let mesh_instance = mesh_instances
.get(entity)
.expect("Failed to find render mesh instance");
(
(&mesh_instance.transforms).into(),
mesh_instance.automatic_batching.then_some((
mesh_instance.material_bind_group_id,
mesh_instance.mesh_asset_id,
)),
)
}
}
bitflags::bitflags! {
#[derive(Clone, Copy, Debug, PartialEq, Eq, Hash)]
#[repr(transparent)]
// NOTE: Apparently quadro drivers support up to 64x MSAA.
/// MSAA uses the highest 3 bits for the MSAA log2(sample count) to support up to 128x MSAA.
pub struct MeshPipelineKey: u32 {
const NONE = 0;
const HDR = (1 << 0);
const TONEMAP_IN_SHADER = (1 << 1);
const DEBAND_DITHER = (1 << 2);
const DEPTH_PREPASS = (1 << 3);
const NORMAL_PREPASS = (1 << 4);
const MOTION_VECTOR_PREPASS = (1 << 5);
const MAY_DISCARD = (1 << 6); // Guards shader codepaths that may discard, allowing early depth tests in most cases
// See: https://www.khronos.org/opengl/wiki/Early_Fragment_Test
const ENVIRONMENT_MAP = (1 << 7);
const SCREEN_SPACE_AMBIENT_OCCLUSION = (1 << 8);
const DEPTH_CLAMP_ORTHO = (1 << 9);
const TAA = (1 << 10);
const MORPH_TARGETS = (1 << 11);
const BLEND_RESERVED_BITS = Self::BLEND_MASK_BITS << Self::BLEND_SHIFT_BITS; // ← Bitmask reserving bits for the blend state
const BLEND_OPAQUE = (0 << Self::BLEND_SHIFT_BITS); // ← Values are just sequential within the mask, and can range from 0 to 3
const BLEND_PREMULTIPLIED_ALPHA = (1 << Self::BLEND_SHIFT_BITS); //
const BLEND_MULTIPLY = (2 << Self::BLEND_SHIFT_BITS); // ← We still have room for one more value without adding more bits
const BLEND_ALPHA = (3 << Self::BLEND_SHIFT_BITS);
const MSAA_RESERVED_BITS = Self::MSAA_MASK_BITS << Self::MSAA_SHIFT_BITS;
const PRIMITIVE_TOPOLOGY_RESERVED_BITS = Self::PRIMITIVE_TOPOLOGY_MASK_BITS << Self::PRIMITIVE_TOPOLOGY_SHIFT_BITS;
const TONEMAP_METHOD_RESERVED_BITS = Self::TONEMAP_METHOD_MASK_BITS << Self::TONEMAP_METHOD_SHIFT_BITS;
const TONEMAP_METHOD_NONE = 0 << Self::TONEMAP_METHOD_SHIFT_BITS;
const TONEMAP_METHOD_REINHARD = 1 << Self::TONEMAP_METHOD_SHIFT_BITS;
const TONEMAP_METHOD_REINHARD_LUMINANCE = 2 << Self::TONEMAP_METHOD_SHIFT_BITS;
const TONEMAP_METHOD_ACES_FITTED = 3 << Self::TONEMAP_METHOD_SHIFT_BITS;
const TONEMAP_METHOD_AGX = 4 << Self::TONEMAP_METHOD_SHIFT_BITS;
const TONEMAP_METHOD_SOMEWHAT_BORING_DISPLAY_TRANSFORM = 5 << Self::TONEMAP_METHOD_SHIFT_BITS;
const TONEMAP_METHOD_TONY_MC_MAPFACE = 6 << Self::TONEMAP_METHOD_SHIFT_BITS;
const TONEMAP_METHOD_BLENDER_FILMIC = 7 << Self::TONEMAP_METHOD_SHIFT_BITS;
}
}
impl MeshPipelineKey {
const MSAA_MASK_BITS: u32 = 0b111;
const MSAA_SHIFT_BITS: u32 = 32 - Self::MSAA_MASK_BITS.count_ones();
const PRIMITIVE_TOPOLOGY_MASK_BITS: u32 = 0b111;
const PRIMITIVE_TOPOLOGY_SHIFT_BITS: u32 =
Self::MSAA_SHIFT_BITS - Self::PRIMITIVE_TOPOLOGY_MASK_BITS.count_ones();
const BLEND_MASK_BITS: u32 = 0b11;
const BLEND_SHIFT_BITS: u32 =
Self::PRIMITIVE_TOPOLOGY_SHIFT_BITS - Self::BLEND_MASK_BITS.count_ones();
const TONEMAP_METHOD_MASK_BITS: u32 = 0b111;
const TONEMAP_METHOD_SHIFT_BITS: u32 =
Self::BLEND_SHIFT_BITS - Self::TONEMAP_METHOD_MASK_BITS.count_ones();
pub fn from_msaa_samples(msaa_samples: u32) -> Self {
let msaa_bits =
(msaa_samples.trailing_zeros() & Self::MSAA_MASK_BITS) << Self::MSAA_SHIFT_BITS;
Self::from_bits_retain(msaa_bits)
}
pub fn from_hdr(hdr: bool) -> Self {
if hdr {
MeshPipelineKey::HDR
} else {
MeshPipelineKey::NONE
}
}
pub fn msaa_samples(&self) -> u32 {
1 << ((self.bits() >> Self::MSAA_SHIFT_BITS) & Self::MSAA_MASK_BITS)
}
pub fn from_primitive_topology(primitive_topology: PrimitiveTopology) -> Self {
let primitive_topology_bits = ((primitive_topology as u32)
& Self::PRIMITIVE_TOPOLOGY_MASK_BITS)
<< Self::PRIMITIVE_TOPOLOGY_SHIFT_BITS;
Self::from_bits_retain(primitive_topology_bits)
}
pub fn primitive_topology(&self) -> PrimitiveTopology {
let primitive_topology_bits = (self.bits() >> Self::PRIMITIVE_TOPOLOGY_SHIFT_BITS)
& Self::PRIMITIVE_TOPOLOGY_MASK_BITS;
match primitive_topology_bits {
x if x == PrimitiveTopology::PointList as u32 => PrimitiveTopology::PointList,
x if x == PrimitiveTopology::LineList as u32 => PrimitiveTopology::LineList,
x if x == PrimitiveTopology::LineStrip as u32 => PrimitiveTopology::LineStrip,
x if x == PrimitiveTopology::TriangleList as u32 => PrimitiveTopology::TriangleList,
x if x == PrimitiveTopology::TriangleStrip as u32 => PrimitiveTopology::TriangleStrip,
_ => PrimitiveTopology::default(),
}
}
}
fn is_skinned(layout: &Hashed<InnerMeshVertexBufferLayout>) -> bool {
layout.contains(Mesh::ATTRIBUTE_JOINT_INDEX) && layout.contains(Mesh::ATTRIBUTE_JOINT_WEIGHT)
}
pub fn setup_morph_and_skinning_defs(
mesh_layouts: &MeshLayouts,
layout: &Hashed<InnerMeshVertexBufferLayout>,
offset: u32,
key: &MeshPipelineKey,
shader_defs: &mut Vec<ShaderDefVal>,
vertex_attributes: &mut Vec<VertexAttributeDescriptor>,
) -> BindGroupLayout {
let mut add_skin_data = || {
shader_defs.push("SKINNED".into());
vertex_attributes.push(Mesh::ATTRIBUTE_JOINT_INDEX.at_shader_location(offset));
vertex_attributes.push(Mesh::ATTRIBUTE_JOINT_WEIGHT.at_shader_location(offset + 1));
};
let is_morphed = key.intersects(MeshPipelineKey::MORPH_TARGETS);
match (is_skinned(layout), is_morphed) {
(true, false) => {
add_skin_data();
mesh_layouts.skinned.clone()
}
(true, true) => {
add_skin_data();
shader_defs.push("MORPH_TARGETS".into());
mesh_layouts.morphed_skinned.clone()
}
(false, true) => {
shader_defs.push("MORPH_TARGETS".into());
mesh_layouts.morphed.clone()
}
(false, false) => mesh_layouts.model_only.clone(),
}
}
impl SpecializedMeshPipeline for MeshPipeline {
type Key = MeshPipelineKey;
fn specialize(
&self,
key: Self::Key,
layout: &MeshVertexBufferLayout,
) -> Result<RenderPipelineDescriptor, SpecializedMeshPipelineError> {
let mut shader_defs = Vec::new();
let mut vertex_attributes = Vec::new();
shader_defs.push("VERTEX_OUTPUT_INSTANCE_INDEX".into());
if layout.contains(Mesh::ATTRIBUTE_POSITION) {
shader_defs.push("VERTEX_POSITIONS".into());
vertex_attributes.push(Mesh::ATTRIBUTE_POSITION.at_shader_location(0));
}
if layout.contains(Mesh::ATTRIBUTE_NORMAL) {
shader_defs.push("VERTEX_NORMALS".into());
vertex_attributes.push(Mesh::ATTRIBUTE_NORMAL.at_shader_location(1));
}
if layout.contains(Mesh::ATTRIBUTE_UV_0) {
shader_defs.push("VERTEX_UVS".into());
vertex_attributes.push(Mesh::ATTRIBUTE_UV_0.at_shader_location(2));
}
if layout.contains(Mesh::ATTRIBUTE_UV_1) {
shader_defs.push("VERTEX_UVS_1".into());
vertex_attributes.push(Mesh::ATTRIBUTE_UV_1.at_shader_location(3));
}
if layout.contains(Mesh::ATTRIBUTE_TANGENT) {
shader_defs.push("VERTEX_TANGENTS".into());
vertex_attributes.push(Mesh::ATTRIBUTE_TANGENT.at_shader_location(4));
}
if layout.contains(Mesh::ATTRIBUTE_COLOR) {
shader_defs.push("VERTEX_COLORS".into());
vertex_attributes.push(Mesh::ATTRIBUTE_COLOR.at_shader_location(5));
}
let mut bind_group_layout = match key.msaa_samples() {
1 => vec![self.view_layout.clone()],
_ => {
shader_defs.push("MULTISAMPLED".into());
vec![self.view_layout_multisampled.clone()]
}
};
bind_group_layout.push(setup_morph_and_skinning_defs(
&self.mesh_layouts,
layout,
6,
&key,
&mut shader_defs,
&mut vertex_attributes,
));
if key.contains(MeshPipelineKey::SCREEN_SPACE_AMBIENT_OCCLUSION) {
shader_defs.push("SCREEN_SPACE_AMBIENT_OCCLUSION".into());
}
let vertex_buffer_layout = layout.get_layout(&vertex_attributes)?;
let (label, blend, depth_write_enabled);
let pass = key.intersection(MeshPipelineKey::BLEND_RESERVED_BITS);
let mut is_opaque = false;
if pass == MeshPipelineKey::BLEND_ALPHA {
label = "alpha_blend_mesh_pipeline".into();
blend = Some(BlendState::ALPHA_BLENDING);
// For the transparent pass, fragments that are closer will be alpha blended
// but their depth is not written to the depth buffer
depth_write_enabled = false;
} else if pass == MeshPipelineKey::BLEND_PREMULTIPLIED_ALPHA {
label = "premultiplied_alpha_mesh_pipeline".into();
blend = Some(BlendState::PREMULTIPLIED_ALPHA_BLENDING);
shader_defs.push("PREMULTIPLY_ALPHA".into());
shader_defs.push("BLEND_PREMULTIPLIED_ALPHA".into());
// For the transparent pass, fragments that are closer will be alpha blended
// but their depth is not written to the depth buffer
depth_write_enabled = false;
} else if pass == MeshPipelineKey::BLEND_MULTIPLY {
label = "multiply_mesh_pipeline".into();
blend = Some(BlendState {
color: BlendComponent {
src_factor: BlendFactor::Dst,
dst_factor: BlendFactor::OneMinusSrcAlpha,
operation: BlendOperation::Add,
},
alpha: BlendComponent::OVER,
});
shader_defs.push("PREMULTIPLY_ALPHA".into());
shader_defs.push("BLEND_MULTIPLY".into());
// For the multiply pass, fragments that are closer will be alpha blended
// but their depth is not written to the depth buffer
depth_write_enabled = false;
} else {
label = "opaque_mesh_pipeline".into();
blend = Some(BlendState::REPLACE);
// For the opaque and alpha mask passes, fragments that are closer will replace
// the current fragment value in the output and the depth is written to the
// depth buffer
depth_write_enabled = true;
is_opaque = true;
}
if key.contains(MeshPipelineKey::NORMAL_PREPASS) && key.msaa_samples() == 1 && is_opaque {
shader_defs.push("LOAD_PREPASS_NORMALS".into());
}
if key.contains(MeshPipelineKey::TONEMAP_IN_SHADER) {
shader_defs.push("TONEMAP_IN_SHADER".into());
let method = key.intersection(MeshPipelineKey::TONEMAP_METHOD_RESERVED_BITS);
if method == MeshPipelineKey::TONEMAP_METHOD_NONE {
shader_defs.push("TONEMAP_METHOD_NONE".into());
} else if method == MeshPipelineKey::TONEMAP_METHOD_REINHARD {
shader_defs.push("TONEMAP_METHOD_REINHARD".into());
} else if method == MeshPipelineKey::TONEMAP_METHOD_REINHARD_LUMINANCE {
shader_defs.push("TONEMAP_METHOD_REINHARD_LUMINANCE".into());
} else if method == MeshPipelineKey::TONEMAP_METHOD_ACES_FITTED {
shader_defs.push("TONEMAP_METHOD_ACES_FITTED ".into());
} else if method == MeshPipelineKey::TONEMAP_METHOD_AGX {
shader_defs.push("TONEMAP_METHOD_AGX".into());
} else if method == MeshPipelineKey::TONEMAP_METHOD_SOMEWHAT_BORING_DISPLAY_TRANSFORM {
shader_defs.push("TONEMAP_METHOD_SOMEWHAT_BORING_DISPLAY_TRANSFORM".into());
} else if method == MeshPipelineKey::TONEMAP_METHOD_BLENDER_FILMIC {
shader_defs.push("TONEMAP_METHOD_BLENDER_FILMIC".into());
} else if method == MeshPipelineKey::TONEMAP_METHOD_TONY_MC_MAPFACE {
shader_defs.push("TONEMAP_METHOD_TONY_MC_MAPFACE".into());
}
// Debanding is tied to tonemapping in the shader, cannot run without it.
if key.contains(MeshPipelineKey::DEBAND_DITHER) {
shader_defs.push("DEBAND_DITHER".into());
}
}
if key.contains(MeshPipelineKey::MAY_DISCARD) {
shader_defs.push("MAY_DISCARD".into());
}
if key.contains(MeshPipelineKey::ENVIRONMENT_MAP) {
shader_defs.push("ENVIRONMENT_MAP".into());
}
if key.contains(MeshPipelineKey::TAA) {
shader_defs.push("TAA".into());
}
let format = if key.contains(MeshPipelineKey::HDR) {
ViewTarget::TEXTURE_FORMAT_HDR
} else {
TextureFormat::bevy_default()
};
// This is defined here so that custom shaders that use something other than
// the mesh binding from bevy_pbr::mesh_bindings can easily make use of this
// in their own shaders.
if let Some(per_object_buffer_batch_size) = self.per_object_buffer_batch_size {
shader_defs.push(ShaderDefVal::UInt(
"PER_OBJECT_BUFFER_BATCH_SIZE".into(),
per_object_buffer_batch_size,
));
}
let mut push_constant_ranges = Vec::with_capacity(1);
if cfg!(all(feature = "webgl", target_arch = "wasm32")) {
push_constant_ranges.push(PushConstantRange {
stages: ShaderStages::VERTEX,
range: 0..4,
});
}
Ok(RenderPipelineDescriptor {
vertex: VertexState {
shader: MESH_SHADER_HANDLE,
entry_point: "vertex".into(),
shader_defs: shader_defs.clone(),
buffers: vec![vertex_buffer_layout],
},
fragment: Some(FragmentState {
shader: MESH_SHADER_HANDLE,
shader_defs,
entry_point: "fragment".into(),
targets: vec![Some(ColorTargetState {
format,
blend,
write_mask: ColorWrites::ALL,
})],
}),
layout: bind_group_layout,
push_constant_ranges,
primitive: PrimitiveState {
front_face: FrontFace::Ccw,
cull_mode: Some(Face::Back),
unclipped_depth: false,
polygon_mode: PolygonMode::Fill,
conservative: false,
topology: key.primitive_topology(),
strip_index_format: None,
},
depth_stencil: Some(DepthStencilState {
format: TextureFormat::Depth32Float,
depth_write_enabled,
depth_compare: CompareFunction::GreaterEqual,
stencil: StencilState {
front: StencilFaceState::IGNORE,
back: StencilFaceState::IGNORE,
read_mask: 0,
write_mask: 0,
},
bias: DepthBiasState {
constant: 0,
slope_scale: 0.0,
clamp: 0.0,
},
}),
multisample: MultisampleState {
count: key.msaa_samples(),
mask: !0,
alpha_to_coverage_enabled: false,
},
label: Some(label),
})
}
}
/// Bind groups for meshes currently loaded.
#[derive(Resource, Default)]
pub struct MeshBindGroups {
model_only: Option<BindGroup>,
skinned: Option<BindGroup>,
morph_targets: HashMap<AssetId<Mesh>, BindGroup>,
}
impl MeshBindGroups {
pub fn reset(&mut self) {
self.model_only = None;
self.skinned = None;
self.morph_targets.clear();
}
/// Get the `BindGroup` for `GpuMesh` with given `handle_id`.
pub fn get(
&self,
asset_id: AssetId<Mesh>,
is_skinned: bool,
morph: bool,
) -> Option<&BindGroup> {
match (is_skinned, morph) {
(_, true) => self.morph_targets.get(&asset_id),
(true, false) => self.skinned.as_ref(),
(false, false) => self.model_only.as_ref(),
}
}
}
pub fn prepare_mesh_bind_group(
meshes: Res<RenderAssets<Mesh>>,
mut groups: ResMut<MeshBindGroups>,
mesh_pipeline: Res<MeshPipeline>,
render_device: Res<RenderDevice>,
mesh_uniforms: Res<GpuArrayBuffer<MeshUniform>>,
skins_uniform: Res<SkinUniform>,
weights_uniform: Res<MorphUniform>,
) {
groups.reset();
let layouts = &mesh_pipeline.mesh_layouts;
let Some(model) = mesh_uniforms.binding() else {
return;
};
groups.model_only = Some(layouts.model_only(&render_device, &model));
let skin = skins_uniform.buffer.buffer();
if let Some(skin) = skin {
groups.skinned = Some(layouts.skinned(&render_device, &model, skin));
}
if let Some(weights) = weights_uniform.buffer.buffer() {
for (id, gpu_mesh) in meshes.iter() {
if let Some(targets) = gpu_mesh.morph_targets.as_ref() {
let group = if let Some(skin) = skin.filter(|_| is_skinned(&gpu_mesh.layout)) {
layouts.morphed_skinned(&render_device, &model, skin, weights, targets)
} else {
layouts.morphed(&render_device, &model, weights, targets)
};
groups.morph_targets.insert(id, group);
}
}
}
}
#[derive(Component)]
pub struct MeshViewBindGroup {
pub value: BindGroup,
}
#[allow(clippy::too_many_arguments)]
pub fn prepare_mesh_view_bind_groups(
mut commands: Commands,
render_device: Res<RenderDevice>,
mesh_pipeline: Res<MeshPipeline>,
shadow_samplers: Res<ShadowSamplers>,
light_meta: Res<LightMeta>,
global_light_meta: Res<GlobalLightMeta>,
fog_meta: Res<FogMeta>,
view_uniforms: Res<ViewUniforms>,
views: Query<(
Entity,
&ViewShadowBindings,
&ViewClusterBindings,
Option<&ScreenSpaceAmbientOcclusionTextures>,
Option<&ViewPrepassTextures>,
Option<&EnvironmentMapLight>,
&Tonemapping,
)>,
images: Res<RenderAssets<Image>>,
mut fallback_images: FallbackImagesMsaa,
mut fallback_depths: FallbackImagesDepth,
fallback_cubemap: Res<FallbackImageCubemap>,
msaa: Res<Msaa>,
globals_buffer: Res<GlobalsBuffer>,
tonemapping_luts: Res<TonemappingLuts>,
) {
if let (
Some(view_binding),
Some(light_binding),
Some(point_light_binding),
Some(globals),
Some(fog_binding),
) = (
view_uniforms.uniforms.binding(),
light_meta.view_gpu_lights.binding(),
global_light_meta.gpu_point_lights.binding(),
globals_buffer.buffer.binding(),
fog_meta.gpu_fogs.binding(),
) {
for (
entity,
view_shadow_bindings,
view_cluster_bindings,
ssao_textures,
prepass_textures,
environment_map,
tonemapping,
) in &views
{
let fallback_ssao = fallback_images
.image_for_samplecount(1)
.texture_view
.clone();
let layout = if msaa.samples() > 1 {
&mesh_pipeline.view_layout_multisampled
} else {
&mesh_pipeline.view_layout
};
let mut entries = vec![
BindGroupEntry {
binding: 0,
resource: view_binding.clone(),
},
BindGroupEntry {
binding: 1,
resource: light_binding.clone(),
},
BindGroupEntry {
binding: 2,
resource: BindingResource::TextureView(
&view_shadow_bindings.point_light_depth_texture_view,
),
},
BindGroupEntry {
binding: 3,
resource: BindingResource::Sampler(&shadow_samplers.point_light_sampler),
},
BindGroupEntry {
binding: 4,
resource: BindingResource::TextureView(
&view_shadow_bindings.directional_light_depth_texture_view,
),
},
BindGroupEntry {
binding: 5,
resource: BindingResource::Sampler(&shadow_samplers.directional_light_sampler),
},
BindGroupEntry {
binding: 6,
resource: point_light_binding.clone(),
},
BindGroupEntry {
binding: 7,
resource: view_cluster_bindings.light_index_lists_binding().unwrap(),
},
BindGroupEntry {
binding: 8,
resource: view_cluster_bindings.offsets_and_counts_binding().unwrap(),
},
BindGroupEntry {
binding: 9,
resource: globals.clone(),
},
BindGroupEntry {
binding: 10,
resource: fog_binding.clone(),
},
BindGroupEntry {
binding: 11,
resource: BindingResource::TextureView(
ssao_textures
.map(|t| &t.screen_space_ambient_occlusion_texture.default_view)
.unwrap_or(&fallback_ssao),
),
},
];
let env_map = environment_map::get_bindings(
environment_map,
&images,
&fallback_cubemap,
[12, 13, 14],
);
entries.extend_from_slice(&env_map);
let tonemapping_luts =
get_lut_bindings(&images, &tonemapping_luts, tonemapping, [15, 16]);
entries.extend_from_slice(&tonemapping_luts);
// When using WebGL, we can't have a depth texture with multisampling
if cfg!(any(not(feature = "webgl"), not(target_arch = "wasm32")))
|| (cfg!(all(feature = "webgl", target_arch = "wasm32")) && msaa.samples() == 1)
{
entries.extend_from_slice(&prepass::get_bindings(
prepass_textures,
&mut fallback_images,
&mut fallback_depths,
&msaa,
[17, 18, 19],
));
}
let view_bind_group = render_device.create_bind_group(&BindGroupDescriptor {
entries: &entries,
label: Some("mesh_view_bind_group"),
layout,
});
commands.entity(entity).insert(MeshViewBindGroup {
value: view_bind_group,
});
}
}
}
pub struct SetMeshViewBindGroup<const I: usize>;
impl<P: PhaseItem, const I: usize> RenderCommand<P> for SetMeshViewBindGroup<I> {
type Param = ();
type ViewWorldQuery = (
Read<ViewUniformOffset>,
Read<ViewLightsUniformOffset>,
Read<ViewFogUniformOffset>,
Read<MeshViewBindGroup>,
);
type ItemWorldQuery = ();
#[inline]
fn render<'w>(
_item: &P,
(view_uniform, view_lights, view_fog, mesh_view_bind_group): ROQueryItem<
'w,
Self::ViewWorldQuery,
>,
_entity: (),
_: SystemParamItem<'w, '_, Self::Param>,
pass: &mut TrackedRenderPass<'w>,
) -> RenderCommandResult {
pass.set_bind_group(
I,
&mesh_view_bind_group.value,
&[view_uniform.offset, view_lights.offset, view_fog.offset],
);
RenderCommandResult::Success
}
}
pub struct SetMeshBindGroup<const I: usize>;
impl<P: PhaseItem, const I: usize> RenderCommand<P> for SetMeshBindGroup<I> {
type Param = (
SRes<MeshBindGroups>,
SRes<RenderMeshInstances>,
SRes<SkinIndices>,
SRes<MorphIndices>,
);
type ViewWorldQuery = ();
type ItemWorldQuery = ();
#[inline]
fn render<'w>(
item: &P,
_view: (),
_item_query: (),
(bind_groups, mesh_instances, skin_indices, morph_indices): SystemParamItem<
'w,
'_,
Self::Param,
>,
pass: &mut TrackedRenderPass<'w>,
) -> RenderCommandResult {
let bind_groups = bind_groups.into_inner();
let mesh_instances = mesh_instances.into_inner();
let skin_indices = skin_indices.into_inner();
let morph_indices = morph_indices.into_inner();
let entity = &item.entity();
let Some(mesh) = mesh_instances.get(entity) else {
return RenderCommandResult::Success;
};
let skin_index = skin_indices.get(entity);
let morph_index = morph_indices.get(entity);
let is_skinned = skin_index.is_some();
let is_morphed = morph_index.is_some();
let Some(bind_group) = bind_groups.get(mesh.mesh_asset_id, is_skinned, is_morphed) else {
error!(
"The MeshBindGroups resource wasn't set in the render phase. \
It should be set by the queue_mesh_bind_group system.\n\
This is a bevy bug! Please open an issue."
);
return RenderCommandResult::Failure;
};
let mut dynamic_offsets: [u32; 3] = Default::default();
let mut offset_count = 0;
if let Some(dynamic_offset) = item.dynamic_offset() {
dynamic_offsets[offset_count] = dynamic_offset.get();
offset_count += 1;
}
if let Some(skin_index) = skin_index {
dynamic_offsets[offset_count] = skin_index.index;
offset_count += 1;
}
if let Some(morph_index) = morph_index {
dynamic_offsets[offset_count] = morph_index.index;
offset_count += 1;
}
pass.set_bind_group(I, bind_group, &dynamic_offsets[0..offset_count]);
RenderCommandResult::Success
}
}
pub struct DrawMesh;
impl<P: PhaseItem> RenderCommand<P> for DrawMesh {
type Param = (SRes<RenderAssets<Mesh>>, SRes<RenderMeshInstances>);
type ViewWorldQuery = ();
type ItemWorldQuery = ();
#[inline]
fn render<'w>(
item: &P,
_view: (),
_item_query: (),
(meshes, mesh_instances): SystemParamItem<'w, '_, Self::Param>,
pass: &mut TrackedRenderPass<'w>,
) -> RenderCommandResult {
let meshes = meshes.into_inner();
let mesh_instances = mesh_instances.into_inner();
let Some(mesh_instance) = mesh_instances.get(&item.entity()) else {
return RenderCommandResult::Failure;
};
let Some(gpu_mesh) = meshes.get(mesh_instance.mesh_asset_id) else {
return RenderCommandResult::Failure;
};
pass.set_vertex_buffer(0, gpu_mesh.vertex_buffer.slice(..));
let batch_range = item.batch_range();
#[cfg(all(feature = "webgl", target_arch = "wasm32"))]
pass.set_push_constants(
ShaderStages::VERTEX,
0,
&(batch_range.start as i32).to_le_bytes(),
);
match &gpu_mesh.buffer_info {
GpuBufferInfo::Indexed {
buffer,
index_format,
count,
} => {
pass.set_index_buffer(buffer.slice(..), 0, *index_format);
pass.draw_indexed(0..*count, 0, batch_range.clone());
}
GpuBufferInfo::NonIndexed => {
pass.draw(0..gpu_mesh.vertex_count, batch_range.clone());
}
}
RenderCommandResult::Success
}
}
#[cfg(test)]
mod tests {
use super::MeshPipelineKey;
#[test]
fn mesh_key_msaa_samples() {
for i in [1, 2, 4, 8, 16, 32, 64, 128] {
assert_eq!(MeshPipelineKey::from_msaa_samples(i).msaa_samples(), i);
}
}
}