bevy/crates/bevy_ecs/src/change_detection.rs
Tristan Guichaoua cfb65c1eaf
Add replace_if_neq to DetectChangesMut (#9418)
# Objective

Just like
[`set_if_neq`](https://docs.rs/bevy_ecs/latest/bevy_ecs/change_detection/trait.DetectChangesMut.html#method.set_if_neq),
being able to express the "I don't want to unnecessarily trigger the
change detection" but with the ability to handle the previous value if
change occurs.

## Solution

Add `replace_if_neq` to `DetectChangesMut`.

---

## Changelog

- Added `DetectChangesMut::replace_if_neq`: like `set_if_neq` change the
value only if the new value if different from the current one, but
return the previous value if the change occurs.
2023-08-11 21:10:16 +00:00

1177 lines
39 KiB
Rust
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

//! Types that detect when their internal data mutate.
use crate::{
component::{Tick, TickCells},
ptr::PtrMut,
system::Resource,
};
use bevy_ptr::{Ptr, UnsafeCellDeref};
use std::mem;
use std::ops::{Deref, DerefMut};
/// The (arbitrarily chosen) minimum number of world tick increments between `check_tick` scans.
///
/// Change ticks can only be scanned when systems aren't running. Thus, if the threshold is `N`,
/// the maximum is `2 * N - 1` (i.e. the world ticks `N - 1` times, then `N` times).
///
/// If no change is older than `u32::MAX - (2 * N - 1)` following a scan, none of their ages can
/// overflow and cause false positives.
// (518,400,000 = 1000 ticks per frame * 144 frames per second * 3600 seconds per hour)
pub const CHECK_TICK_THRESHOLD: u32 = 518_400_000;
/// The maximum change tick difference that won't overflow before the next `check_tick` scan.
///
/// Changes stop being detected once they become this old.
pub const MAX_CHANGE_AGE: u32 = u32::MAX - (2 * CHECK_TICK_THRESHOLD - 1);
/// Types that can read change detection information.
/// This change detection is controlled by [`DetectChangesMut`] types such as [`ResMut`].
///
/// ## Example
/// Using types that implement [`DetectChanges`], such as [`Res`], provide
/// a way to query if a value has been mutated in another system.
///
/// ```
/// use bevy_ecs::prelude::*;
///
/// #[derive(Resource)]
/// struct MyResource(u32);
///
/// fn my_system(mut resource: Res<MyResource>) {
/// if resource.is_changed() {
/// println!("My component was mutated!");
/// }
/// }
/// ```
pub trait DetectChanges {
/// Returns `true` if this value was added after the system last ran.
fn is_added(&self) -> bool;
/// Returns `true` if this value was added or mutably dereferenced
/// either since the last time the system ran or, if the system never ran,
/// since the beginning of the program.
///
/// To check if the value was mutably dereferenced only,
/// use `this.is_changed() && !this.is_added()`.
fn is_changed(&self) -> bool;
/// Returns the change tick recording the time this data was most recently changed.
///
/// Note that components and resources are also marked as changed upon insertion.
///
/// For comparison, the previous change tick of a system can be read using the
/// [`SystemChangeTick`](crate::system::SystemChangeTick)
/// [`SystemParam`](crate::system::SystemParam).
fn last_changed(&self) -> Tick;
}
/// Types that implement reliable change detection.
///
/// ## Example
/// Using types that implement [`DetectChangesMut`], such as [`ResMut`], provide
/// a way to query if a value has been mutated in another system.
/// Normally change detection is triggered by either [`DerefMut`] or [`AsMut`], however
/// it can be manually triggered via [`set_if_neq`](`DetectChangesMut::set_changed`).
///
/// To ensure that changes are only triggered when the value actually differs,
/// check if the value would change before assignment, such as by checking that `new != old`.
/// You must be *sure* that you are not mutably dereferencing in this process.
///
/// [`set_if_neq`](DetectChangesMut::set_if_neq) is a helper
/// method for this common functionality.
///
/// ```
/// use bevy_ecs::prelude::*;
///
/// #[derive(Resource)]
/// struct MyResource(u32);
///
/// fn my_system(mut resource: ResMut<MyResource>) {
/// if resource.is_changed() {
/// println!("My resource was mutated!");
/// }
///
/// resource.0 = 42; // triggers change detection via [`DerefMut`]
/// }
/// ```
///
pub trait DetectChangesMut: DetectChanges {
/// The type contained within this smart pointer
///
/// For example, for `ResMut<T>` this would be `T`.
type Inner: ?Sized;
/// Flags this value as having been changed.
///
/// Mutably accessing this smart pointer will automatically flag this value as having been changed.
/// However, mutation through interior mutability requires manual reporting.
///
/// **Note**: This operation cannot be undone.
fn set_changed(&mut self);
/// Manually sets the change tick recording the time when this data was last mutated.
///
/// # Warning
/// This is a complex and error-prone operation, primarily intended for use with rollback networking strategies.
/// If you merely want to flag this data as changed, use [`set_changed`](DetectChangesMut::set_changed) instead.
/// If you want to avoid triggering change detection, use [`bypass_change_detection`](DetectChangesMut::bypass_change_detection) instead.
fn set_last_changed(&mut self, last_changed: Tick);
/// Manually bypasses change detection, allowing you to mutate the underlying value without updating the change tick.
///
/// # Warning
/// This is a risky operation, that can have unexpected consequences on any system relying on this code.
/// However, it can be an essential escape hatch when, for example,
/// you are trying to synchronize representations using change detection and need to avoid infinite recursion.
fn bypass_change_detection(&mut self) -> &mut Self::Inner;
/// Overwrites this smart pointer with the given value, if and only if `*self != value`
///
/// This is useful to ensure change detection is only triggered when the underlying value
/// changes, instead of every time it is mutably accessed.
///
/// If you need to handle the previous value, use [`replace_if_neq`](DetectChangesMut::replace_if_neq).
///
/// # Examples
///
/// ```
/// # use bevy_ecs::{prelude::*, schedule::common_conditions::resource_changed};
/// #[derive(Resource, PartialEq, Eq)]
/// pub struct Score(u32);
///
/// fn reset_score(mut score: ResMut<Score>) {
/// // Set the score to zero, unless it is already zero.
/// score.set_if_neq(Score(0));
/// }
/// # let mut world = World::new();
/// # world.insert_resource(Score(1));
/// # let mut score_changed = IntoSystem::into_system(resource_changed::<Score>());
/// # score_changed.initialize(&mut world);
/// # score_changed.run((), &mut world);
/// #
/// # let mut schedule = Schedule::new();
/// # schedule.add_systems(reset_score);
/// #
/// # // first time `reset_score` runs, the score is changed.
/// # schedule.run(&mut world);
/// # assert!(score_changed.run((), &mut world));
/// # // second time `reset_score` runs, the score is not changed.
/// # schedule.run(&mut world);
/// # assert!(!score_changed.run((), &mut world));
/// ```
#[inline]
fn set_if_neq(&mut self, value: Self::Inner)
where
Self::Inner: Sized + PartialEq,
{
let old = self.bypass_change_detection();
if *old != value {
*old = value;
self.set_changed();
}
}
/// Overwrites this smart pointer with the given value, if and only if `*self != value`
/// returning the previous value if this occurs.
///
/// This is useful to ensure change detection is only triggered when the underlying value
/// changes, instead of every time it is mutably accessed.
///
/// If you don't need to handle the previous value, use [`set_if_neq`](DetectChangesMut::set_if_neq).
///
/// # Examples
///
/// ```
/// # use bevy_ecs::{prelude::*, schedule::common_conditions::{resource_changed, on_event}};
/// #[derive(Resource, PartialEq, Eq)]
/// pub struct Score(u32);
///
/// #[derive(Event, PartialEq, Eq)]
/// pub struct ScoreChanged {
/// current: u32,
/// previous: u32,
/// }
///
/// fn reset_score(mut score: ResMut<Score>, mut score_changed: EventWriter<ScoreChanged>) {
/// // Set the score to zero, unless it is already zero.
/// let new_score = 0;
/// if let Some(Score(previous_score)) = score.replace_if_neq(Score(new_score)) {
/// // If `score` change, emit a `ScoreChanged` event.
/// score_changed.send(ScoreChanged {
/// current: new_score,
/// previous: previous_score,
/// });
/// }
/// }
/// # let mut world = World::new();
/// # world.insert_resource(Events::<ScoreChanged>::default());
/// # world.insert_resource(Score(1));
/// # let mut score_changed = IntoSystem::into_system(resource_changed::<Score>());
/// # score_changed.initialize(&mut world);
/// # score_changed.run((), &mut world);
/// #
/// # let mut score_changed_event = IntoSystem::into_system(on_event::<ScoreChanged>());
/// # score_changed_event.initialize(&mut world);
/// # score_changed_event.run((), &mut world);
/// #
/// # let mut schedule = Schedule::new();
/// # schedule.add_systems(reset_score);
/// #
/// # // first time `reset_score` runs, the score is changed.
/// # schedule.run(&mut world);
/// # assert!(score_changed.run((), &mut world));
/// # assert!(score_changed_event.run((), &mut world));
/// # // second time `reset_score` runs, the score is not changed.
/// # schedule.run(&mut world);
/// # assert!(!score_changed.run((), &mut world));
/// # assert!(!score_changed_event.run((), &mut world));
/// ```
#[inline]
#[must_use = "If you don't need to handle the previous value, use `set_if_neq` instead."]
fn replace_if_neq(&mut self, value: Self::Inner) -> Option<Self::Inner>
where
Self::Inner: Sized + PartialEq,
{
let old = self.bypass_change_detection();
if *old != value {
let previous = mem::replace(old, value);
self.set_changed();
Some(previous)
} else {
None
}
}
}
macro_rules! change_detection_impl {
($name:ident < $( $generics:tt ),+ >, $target:ty, $($traits:ident)?) => {
impl<$($generics),* : ?Sized $(+ $traits)?> DetectChanges for $name<$($generics),*> {
#[inline]
fn is_added(&self) -> bool {
self.ticks
.added
.is_newer_than(self.ticks.last_run, self.ticks.this_run)
}
#[inline]
fn is_changed(&self) -> bool {
self.ticks
.changed
.is_newer_than(self.ticks.last_run, self.ticks.this_run)
}
#[inline]
fn last_changed(&self) -> Tick {
*self.ticks.changed
}
}
impl<$($generics),*: ?Sized $(+ $traits)?> Deref for $name<$($generics),*> {
type Target = $target;
#[inline]
fn deref(&self) -> &Self::Target {
self.value
}
}
impl<$($generics),* $(: $traits)?> AsRef<$target> for $name<$($generics),*> {
#[inline]
fn as_ref(&self) -> &$target {
self.deref()
}
}
}
}
macro_rules! change_detection_mut_impl {
($name:ident < $( $generics:tt ),+ >, $target:ty, $($traits:ident)?) => {
impl<$($generics),* : ?Sized $(+ $traits)?> DetectChangesMut for $name<$($generics),*> {
type Inner = $target;
#[inline]
fn set_changed(&mut self) {
*self.ticks.changed = self.ticks.this_run;
}
#[inline]
fn set_last_changed(&mut self, last_changed: Tick) {
*self.ticks.changed = last_changed;
}
#[inline]
fn bypass_change_detection(&mut self) -> &mut Self::Inner {
self.value
}
}
impl<$($generics),* : ?Sized $(+ $traits)?> DerefMut for $name<$($generics),*> {
#[inline]
fn deref_mut(&mut self) -> &mut Self::Target {
self.set_changed();
self.value
}
}
impl<$($generics),* $(: $traits)?> AsMut<$target> for $name<$($generics),*> {
#[inline]
fn as_mut(&mut self) -> &mut $target {
self.deref_mut()
}
}
};
}
macro_rules! impl_methods {
($name:ident < $( $generics:tt ),+ >, $target:ty, $($traits:ident)?) => {
impl<$($generics),* : ?Sized $(+ $traits)?> $name<$($generics),*> {
/// Consume `self` and return a mutable reference to the
/// contained value while marking `self` as "changed".
#[inline]
pub fn into_inner(mut self) -> &'a mut $target {
self.set_changed();
self.value
}
/// Returns a `Mut<>` with a smaller lifetime.
/// This is useful if you have `&mut
#[doc = stringify!($name)]
/// <T>`, but you need a `Mut<T>`.
pub fn reborrow(&mut self) -> Mut<'_, $target> {
Mut {
value: self.value,
ticks: TicksMut {
added: self.ticks.added,
changed: self.ticks.changed,
last_run: self.ticks.last_run,
this_run: self.ticks.this_run,
}
}
}
/// Maps to an inner value by applying a function to the contained reference, without flagging a change.
///
/// You should never modify the argument passed to the closure -- if you want to modify the data
/// without flagging a change, consider using [`DetectChangesMut::bypass_change_detection`] to make your intent explicit.
///
/// ```rust
/// # use bevy_ecs::prelude::*;
/// # #[derive(PartialEq)] pub struct Vec2;
/// # impl Vec2 { pub const ZERO: Self = Self; }
/// # #[derive(Component)] pub struct Transform { translation: Vec2 }
/// // When run, zeroes the translation of every entity.
/// fn reset_positions(mut transforms: Query<&mut Transform>) {
/// for transform in &mut transforms {
/// // We pinky promise not to modify `t` within the closure.
/// // Breaking this promise will result in logic errors, but will never cause undefined behavior.
/// let mut translation = transform.map_unchanged(|t| &mut t.translation);
/// // Only reset the translation if it isn't already zero;
/// translation.set_if_neq(Vec2::ZERO);
/// }
/// }
/// # bevy_ecs::system::assert_is_system(reset_positions);
/// ```
pub fn map_unchanged<U: ?Sized>(self, f: impl FnOnce(&mut $target) -> &mut U) -> Mut<'a, U> {
Mut {
value: f(self.value),
ticks: self.ticks,
}
}
}
};
}
macro_rules! impl_debug {
($name:ident < $( $generics:tt ),+ >, $($traits:ident)?) => {
impl<$($generics),* : ?Sized $(+ $traits)?> std::fmt::Debug for $name<$($generics),*>
where T: std::fmt::Debug
{
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
f.debug_tuple(stringify!($name))
.field(&self.value)
.finish()
}
}
};
}
#[derive(Clone)]
pub(crate) struct Ticks<'a> {
pub(crate) added: &'a Tick,
pub(crate) changed: &'a Tick,
pub(crate) last_run: Tick,
pub(crate) this_run: Tick,
}
impl<'a> Ticks<'a> {
/// # Safety
/// This should never alias the underlying ticks with a mutable one such as `TicksMut`.
#[inline]
pub(crate) unsafe fn from_tick_cells(
cells: TickCells<'a>,
last_run: Tick,
this_run: Tick,
) -> Self {
Self {
added: cells.added.deref(),
changed: cells.changed.deref(),
last_run,
this_run,
}
}
}
pub(crate) struct TicksMut<'a> {
pub(crate) added: &'a mut Tick,
pub(crate) changed: &'a mut Tick,
pub(crate) last_run: Tick,
pub(crate) this_run: Tick,
}
impl<'a> TicksMut<'a> {
/// # Safety
/// This should never alias the underlying ticks. All access must be unique.
#[inline]
pub(crate) unsafe fn from_tick_cells(
cells: TickCells<'a>,
last_run: Tick,
this_run: Tick,
) -> Self {
Self {
added: cells.added.deref_mut(),
changed: cells.changed.deref_mut(),
last_run,
this_run,
}
}
}
impl<'a> From<TicksMut<'a>> for Ticks<'a> {
fn from(ticks: TicksMut<'a>) -> Self {
Ticks {
added: ticks.added,
changed: ticks.changed,
last_run: ticks.last_run,
this_run: ticks.this_run,
}
}
}
/// Shared borrow of a [`Resource`].
///
/// See the [`Resource`] documentation for usage.
///
/// If you need a unique mutable borrow, use [`ResMut`] instead.
///
/// # Panics
///
/// Panics when used as a [`SystemParameter`](crate::system::SystemParam) if the resource does not exist.
///
/// Use `Option<Res<T>>` instead if the resource might not always exist.
pub struct Res<'w, T: ?Sized + Resource> {
pub(crate) value: &'w T,
pub(crate) ticks: Ticks<'w>,
}
impl<'w, T: Resource> Res<'w, T> {
/// Copies a reference to a resource.
///
/// Note that unless you actually need an instance of `Res<T>`, you should
/// prefer to just convert it to `&T` which can be freely copied.
#[allow(clippy::should_implement_trait)]
pub fn clone(this: &Self) -> Self {
Self {
value: this.value,
ticks: this.ticks.clone(),
}
}
/// Due to lifetime limitations of the `Deref` trait, this method can be used to obtain a
/// reference of the [`Resource`] with a lifetime bound to `'w` instead of the lifetime of the
/// struct itself.
pub fn into_inner(self) -> &'w T {
self.value
}
}
impl<'w, T: Resource> From<ResMut<'w, T>> for Res<'w, T> {
fn from(res: ResMut<'w, T>) -> Self {
Self {
value: res.value,
ticks: res.ticks.into(),
}
}
}
impl<'w, 'a, T: Resource> IntoIterator for &'a Res<'w, T>
where
&'a T: IntoIterator,
{
type Item = <&'a T as IntoIterator>::Item;
type IntoIter = <&'a T as IntoIterator>::IntoIter;
fn into_iter(self) -> Self::IntoIter {
self.value.into_iter()
}
}
change_detection_impl!(Res<'w, T>, T, Resource);
impl_debug!(Res<'w, T>, Resource);
/// Unique mutable borrow of a [`Resource`].
///
/// See the [`Resource`] documentation for usage.
///
/// If you need a shared borrow, use [`Res`](crate::system::Res) instead.
///
/// # Panics
///
/// Panics when used as a [`SystemParam`](crate::system::SystemParam) if the resource does not exist.
///
/// Use `Option<ResMut<T>>` instead if the resource might not always exist.
pub struct ResMut<'a, T: ?Sized + Resource> {
pub(crate) value: &'a mut T,
pub(crate) ticks: TicksMut<'a>,
}
impl<'w, 'a, T: Resource> IntoIterator for &'a ResMut<'w, T>
where
&'a T: IntoIterator,
{
type Item = <&'a T as IntoIterator>::Item;
type IntoIter = <&'a T as IntoIterator>::IntoIter;
fn into_iter(self) -> Self::IntoIter {
self.value.into_iter()
}
}
impl<'w, 'a, T: Resource> IntoIterator for &'a mut ResMut<'w, T>
where
&'a mut T: IntoIterator,
{
type Item = <&'a mut T as IntoIterator>::Item;
type IntoIter = <&'a mut T as IntoIterator>::IntoIter;
fn into_iter(self) -> Self::IntoIter {
self.set_changed();
self.value.into_iter()
}
}
change_detection_impl!(ResMut<'a, T>, T, Resource);
change_detection_mut_impl!(ResMut<'a, T>, T, Resource);
impl_methods!(ResMut<'a, T>, T, Resource);
impl_debug!(ResMut<'a, T>, Resource);
impl<'a, T: Resource> From<ResMut<'a, T>> for Mut<'a, T> {
/// Convert this `ResMut` into a `Mut`. This allows keeping the change-detection feature of `Mut`
/// while losing the specificity of `ResMut` for resources.
fn from(other: ResMut<'a, T>) -> Mut<'a, T> {
Mut {
value: other.value,
ticks: other.ticks,
}
}
}
/// Unique borrow of a non-[`Send`] resource.
///
/// Only [`Send`] resources may be accessed with the [`ResMut`] [`SystemParam`](crate::system::SystemParam). In case that the
/// resource does not implement `Send`, this `SystemParam` wrapper can be used. This will instruct
/// the scheduler to instead run the system on the main thread so that it doesn't send the resource
/// over to another thread.
///
/// # Panics
///
/// Panics when used as a `SystemParameter` if the resource does not exist.
///
/// Use `Option<NonSendMut<T>>` instead if the resource might not always exist.
pub struct NonSendMut<'a, T: ?Sized + 'static> {
pub(crate) value: &'a mut T,
pub(crate) ticks: TicksMut<'a>,
}
change_detection_impl!(NonSendMut<'a, T>, T,);
change_detection_mut_impl!(NonSendMut<'a, T>, T,);
impl_methods!(NonSendMut<'a, T>, T,);
impl_debug!(NonSendMut<'a, T>,);
impl<'a, T: 'static> From<NonSendMut<'a, T>> for Mut<'a, T> {
/// Convert this `NonSendMut` into a `Mut`. This allows keeping the change-detection feature of `Mut`
/// while losing the specificity of `NonSendMut`.
fn from(other: NonSendMut<'a, T>) -> Mut<'a, T> {
Mut {
value: other.value,
ticks: other.ticks,
}
}
}
/// Shared borrow of an entity's component with access to change detection.
/// Similar to [`Mut`] but is immutable and so doesn't require unique access.
pub struct Ref<'a, T: ?Sized> {
pub(crate) value: &'a T,
pub(crate) ticks: Ticks<'a>,
}
impl<'a, T: ?Sized> Ref<'a, T> {
/// Returns the reference wrapped by this type. The reference is allowed to outlive `self`, which makes this method more flexible than simply borrowing `self`.
pub fn into_inner(self) -> &'a T {
self.value
}
/// Map `Ref` to a different type using `f`.
///
/// This doesn't do anything else than call `f` on the wrapped value.
/// This is equivalent to [`Mut::map_unchanged`].
pub fn map<U: ?Sized>(self, f: impl FnOnce(&T) -> &U) -> Ref<'a, U> {
Ref {
value: f(self.value),
ticks: self.ticks,
}
}
/// Create a new `Ref` using provided values.
///
/// This is an advanced feature, `Ref`s are designed to be _created_ by
/// engine-internal code and _consumed_ by end-user code.
///
/// - `value` - The value wrapped by `Ref`.
/// - `added` - A [`Tick`] that stores the tick when the wrapped value was created.
/// - `changed` - A [`Tick`] that stores the last time the wrapped value was changed.
/// - `last_run` - A [`Tick`], occurring before `this_run`, which is used
/// as a reference to determine whether the wrapped value is newly added or changed.
/// - `this_run` - A [`Tick`] corresponding to the current point in time -- "now".
pub fn new(
value: &'a T,
added: &'a Tick,
changed: &'a Tick,
last_run: Tick,
this_run: Tick,
) -> Ref<'a, T> {
Ref {
value,
ticks: Ticks {
added,
changed,
last_run,
this_run,
},
}
}
}
impl<'w, 'a, T> IntoIterator for &'a Ref<'w, T>
where
&'a T: IntoIterator,
{
type Item = <&'a T as IntoIterator>::Item;
type IntoIter = <&'a T as IntoIterator>::IntoIter;
fn into_iter(self) -> Self::IntoIter {
self.value.into_iter()
}
}
change_detection_impl!(Ref<'a, T>, T,);
impl_debug!(Ref<'a, T>,);
/// Unique mutable borrow of an entity's component
pub struct Mut<'a, T: ?Sized> {
pub(crate) value: &'a mut T,
pub(crate) ticks: TicksMut<'a>,
}
impl<'a, T: ?Sized> Mut<'a, T> {
/// Creates a new change-detection enabled smart pointer.
/// In almost all cases you do not need to call this method manually,
/// as instances of `Mut` will be created by engine-internal code.
///
/// Many use-cases of this method would be better served by [`Mut::map_unchanged`]
/// or [`Mut::reborrow`].
///
/// - `value` - The value wrapped by this smart pointer.
/// - `added` - A [`Tick`] that stores the tick when the wrapped value was created.
/// - `last_changed` - A [`Tick`] that stores the last time the wrapped value was changed.
/// This will be updated to the value of `change_tick` if the returned smart pointer
/// is modified.
/// - `last_run` - A [`Tick`], occurring before `this_run`, which is used
/// as a reference to determine whether the wrapped value is newly added or changed.
/// - `this_run` - A [`Tick`] corresponding to the current point in time -- "now".
pub fn new(
value: &'a mut T,
added: &'a mut Tick,
last_changed: &'a mut Tick,
last_run: Tick,
this_run: Tick,
) -> Self {
Self {
value,
ticks: TicksMut {
added,
changed: last_changed,
last_run,
this_run,
},
}
}
}
impl<'a, T: ?Sized> From<Mut<'a, T>> for Ref<'a, T> {
fn from(mut_ref: Mut<'a, T>) -> Self {
Self {
value: mut_ref.value,
ticks: mut_ref.ticks.into(),
}
}
}
impl<'w, 'a, T> IntoIterator for &'a Mut<'w, T>
where
&'a T: IntoIterator,
{
type Item = <&'a T as IntoIterator>::Item;
type IntoIter = <&'a T as IntoIterator>::IntoIter;
fn into_iter(self) -> Self::IntoIter {
self.value.into_iter()
}
}
impl<'w, 'a, T> IntoIterator for &'a mut Mut<'w, T>
where
&'a mut T: IntoIterator,
{
type Item = <&'a mut T as IntoIterator>::Item;
type IntoIter = <&'a mut T as IntoIterator>::IntoIter;
fn into_iter(self) -> Self::IntoIter {
self.set_changed();
self.value.into_iter()
}
}
change_detection_impl!(Mut<'a, T>, T,);
change_detection_mut_impl!(Mut<'a, T>, T,);
impl_methods!(Mut<'a, T>, T,);
impl_debug!(Mut<'a, T>,);
/// Unique mutable borrow of resources or an entity's component.
///
/// Similar to [`Mut`], but not generic over the component type, instead
/// exposing the raw pointer as a `*mut ()`.
///
/// Usually you don't need to use this and can instead use the APIs returning a
/// [`Mut`], but in situations where the types are not known at compile time
/// or are defined outside of rust this can be used.
pub struct MutUntyped<'a> {
pub(crate) value: PtrMut<'a>,
pub(crate) ticks: TicksMut<'a>,
}
impl<'a> MutUntyped<'a> {
/// Returns the pointer to the value, marking it as changed.
///
/// In order to avoid marking the value as changed, you need to call [`bypass_change_detection`](DetectChangesMut::bypass_change_detection).
#[inline]
pub fn into_inner(mut self) -> PtrMut<'a> {
self.set_changed();
self.value
}
/// Returns a [`MutUntyped`] with a smaller lifetime.
/// This is useful if you have `&mut MutUntyped`, but you need a `MutUntyped`.
#[inline]
pub fn reborrow(&mut self) -> MutUntyped {
MutUntyped {
value: self.value.reborrow(),
ticks: TicksMut {
added: self.ticks.added,
changed: self.ticks.changed,
last_run: self.ticks.last_run,
this_run: self.ticks.this_run,
},
}
}
/// Returns a pointer to the value without taking ownership of this smart pointer, marking it as changed.
///
/// In order to avoid marking the value as changed, you need to call [`bypass_change_detection`](DetectChangesMut::bypass_change_detection).
#[inline]
pub fn as_mut(&mut self) -> PtrMut<'_> {
self.set_changed();
self.value.reborrow()
}
/// Returns an immutable pointer to the value without taking ownership.
#[inline]
pub fn as_ref(&self) -> Ptr<'_> {
self.value.as_ref()
}
/// Turn this [`MutUntyped`] into a [`Mut`] by mapping the inner [`PtrMut`] to another value,
/// without flagging a change.
/// This function is the untyped equivalent of [`Mut::map_unchanged`].
///
/// You should never modify the argument passed to the closure if you want to modify the data without flagging a change, consider using [`bypass_change_detection`](DetectChangesMut::bypass_change_detection) to make your intent explicit.
///
/// If you know the type of the value you can do
/// ```no_run
/// # use bevy_ecs::change_detection::{Mut, MutUntyped};
/// # let mut_untyped: MutUntyped = unimplemented!();
/// // SAFETY: ptr is of type `u8`
/// mut_untyped.map_unchanged(|ptr| unsafe { ptr.deref_mut::<u8>() });
/// ```
/// If you have a [`ReflectFromPtr`](bevy_reflect::ReflectFromPtr) that you know belongs to this [`MutUntyped`],
/// you can do
/// ```no_run
/// # use bevy_ecs::change_detection::{Mut, MutUntyped};
/// # let mut_untyped: MutUntyped = unimplemented!();
/// # let reflect_from_ptr: bevy_reflect::ReflectFromPtr = unimplemented!();
/// // SAFETY: from the context it is known that `ReflectFromPtr` was made for the type of the `MutUntyped`
/// mut_untyped.map_unchanged(|ptr| unsafe { reflect_from_ptr.as_reflect_ptr_mut(ptr) });
/// ```
pub fn map_unchanged<T: ?Sized>(self, f: impl FnOnce(PtrMut<'a>) -> &'a mut T) -> Mut<'a, T> {
Mut {
value: f(self.value),
ticks: self.ticks,
}
}
/// Transforms this [`MutUntyped`] into a [`Mut<T>`] with the same lifetime.
///
/// # Safety
/// - `T` must be the erased pointee type for this [`MutUntyped`].
pub unsafe fn with_type<T>(self) -> Mut<'a, T> {
Mut {
value: self.value.deref_mut(),
ticks: self.ticks,
}
}
}
impl<'a> DetectChanges for MutUntyped<'a> {
#[inline]
fn is_added(&self) -> bool {
self.ticks
.added
.is_newer_than(self.ticks.last_run, self.ticks.this_run)
}
#[inline]
fn is_changed(&self) -> bool {
self.ticks
.changed
.is_newer_than(self.ticks.last_run, self.ticks.this_run)
}
#[inline]
fn last_changed(&self) -> Tick {
*self.ticks.changed
}
}
impl<'a> DetectChangesMut for MutUntyped<'a> {
type Inner = PtrMut<'a>;
#[inline]
fn set_changed(&mut self) {
*self.ticks.changed = self.ticks.this_run;
}
#[inline]
fn set_last_changed(&mut self, last_changed: Tick) {
*self.ticks.changed = last_changed;
}
#[inline]
fn bypass_change_detection(&mut self) -> &mut Self::Inner {
&mut self.value
}
}
impl std::fmt::Debug for MutUntyped<'_> {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
f.debug_tuple("MutUntyped")
.field(&self.value.as_ptr())
.finish()
}
}
#[cfg(test)]
mod tests {
use bevy_ecs_macros::Resource;
use bevy_ptr::PtrMut;
use bevy_reflect::{FromType, ReflectFromPtr};
use crate::{
self as bevy_ecs,
change_detection::{
Mut, NonSendMut, Ref, ResMut, TicksMut, CHECK_TICK_THRESHOLD, MAX_CHANGE_AGE,
},
component::{Component, ComponentTicks, Tick},
system::{IntoSystem, Query, System},
world::World,
};
use super::{DetectChanges, DetectChangesMut, MutUntyped};
#[derive(Component, PartialEq)]
struct C;
#[derive(Resource)]
struct R;
#[derive(Resource, PartialEq)]
struct R2(u8);
#[test]
fn change_expiration() {
fn change_detected(query: Query<Ref<C>>) -> bool {
query.single().is_changed()
}
fn change_expired(query: Query<Ref<C>>) -> bool {
query.single().is_changed()
}
let mut world = World::new();
// component added: 1, changed: 1
world.spawn(C);
let mut change_detected_system = IntoSystem::into_system(change_detected);
let mut change_expired_system = IntoSystem::into_system(change_expired);
change_detected_system.initialize(&mut world);
change_expired_system.initialize(&mut world);
// world: 1, system last ran: 0, component changed: 1
// The spawn will be detected since it happened after the system "last ran".
assert!(change_detected_system.run((), &mut world));
// world: 1 + MAX_CHANGE_AGE
let change_tick = world.change_tick.get_mut();
*change_tick = change_tick.wrapping_add(MAX_CHANGE_AGE);
// Both the system and component appeared `MAX_CHANGE_AGE` ticks ago.
// Since we clamp things to `MAX_CHANGE_AGE` for determinism,
// `ComponentTicks::is_changed` will now see `MAX_CHANGE_AGE > MAX_CHANGE_AGE`
// and return `false`.
assert!(!change_expired_system.run((), &mut world));
}
#[test]
fn change_tick_wraparound() {
let mut world = World::new();
world.last_change_tick = Tick::new(u32::MAX);
*world.change_tick.get_mut() = 0;
// component added: 0, changed: 0
world.spawn(C);
world.increment_change_tick();
// Since the world is always ahead, as long as changes can't get older than `u32::MAX` (which we ensure),
// the wrapping difference will always be positive, so wraparound doesn't matter.
let mut query = world.query::<Ref<C>>();
assert!(query.single(&world).is_changed());
}
#[test]
fn change_tick_scan() {
let mut world = World::new();
// component added: 1, changed: 1
world.spawn(C);
// a bunch of stuff happens, the component is now older than `MAX_CHANGE_AGE`
*world.change_tick.get_mut() += MAX_CHANGE_AGE + CHECK_TICK_THRESHOLD;
let change_tick = world.change_tick();
let mut query = world.query::<Ref<C>>();
for tracker in query.iter(&world) {
let ticks_since_insert = change_tick.relative_to(*tracker.ticks.added).get();
let ticks_since_change = change_tick.relative_to(*tracker.ticks.changed).get();
assert!(ticks_since_insert > MAX_CHANGE_AGE);
assert!(ticks_since_change > MAX_CHANGE_AGE);
}
// scan change ticks and clamp those at risk of overflow
world.check_change_ticks();
for tracker in query.iter(&world) {
let ticks_since_insert = change_tick.relative_to(*tracker.ticks.added).get();
let ticks_since_change = change_tick.relative_to(*tracker.ticks.changed).get();
assert!(ticks_since_insert == MAX_CHANGE_AGE);
assert!(ticks_since_change == MAX_CHANGE_AGE);
}
}
#[test]
fn mut_from_res_mut() {
let mut component_ticks = ComponentTicks {
added: Tick::new(1),
changed: Tick::new(2),
};
let ticks = TicksMut {
added: &mut component_ticks.added,
changed: &mut component_ticks.changed,
last_run: Tick::new(3),
this_run: Tick::new(4),
};
let mut res = R {};
let res_mut = ResMut {
value: &mut res,
ticks,
};
let into_mut: Mut<R> = res_mut.into();
assert_eq!(1, into_mut.ticks.added.get());
assert_eq!(2, into_mut.ticks.changed.get());
assert_eq!(3, into_mut.ticks.last_run.get());
assert_eq!(4, into_mut.ticks.this_run.get());
}
#[test]
fn mut_new() {
let mut component_ticks = ComponentTicks {
added: Tick::new(1),
changed: Tick::new(3),
};
let mut res = R {};
let val = Mut::new(
&mut res,
&mut component_ticks.added,
&mut component_ticks.changed,
Tick::new(2), // last_run
Tick::new(4), // this_run
);
assert!(!val.is_added());
assert!(val.is_changed());
}
#[test]
fn mut_from_non_send_mut() {
let mut component_ticks = ComponentTicks {
added: Tick::new(1),
changed: Tick::new(2),
};
let ticks = TicksMut {
added: &mut component_ticks.added,
changed: &mut component_ticks.changed,
last_run: Tick::new(3),
this_run: Tick::new(4),
};
let mut res = R {};
let non_send_mut = NonSendMut {
value: &mut res,
ticks,
};
let into_mut: Mut<R> = non_send_mut.into();
assert_eq!(1, into_mut.ticks.added.get());
assert_eq!(2, into_mut.ticks.changed.get());
assert_eq!(3, into_mut.ticks.last_run.get());
assert_eq!(4, into_mut.ticks.this_run.get());
}
#[test]
fn map_mut() {
use super::*;
struct Outer(i64);
let last_run = Tick::new(2);
let this_run = Tick::new(3);
let mut component_ticks = ComponentTicks {
added: Tick::new(1),
changed: Tick::new(2),
};
let ticks = TicksMut {
added: &mut component_ticks.added,
changed: &mut component_ticks.changed,
last_run,
this_run,
};
let mut outer = Outer(0);
let ptr = Mut {
value: &mut outer,
ticks,
};
assert!(!ptr.is_changed());
// Perform a mapping operation.
let mut inner = ptr.map_unchanged(|x| &mut x.0);
assert!(!inner.is_changed());
// Mutate the inner value.
*inner = 64;
assert!(inner.is_changed());
// Modifying one field of a component should flag a change for the entire component.
assert!(component_ticks.is_changed(last_run, this_run));
}
#[test]
fn set_if_neq() {
let mut world = World::new();
world.insert_resource(R2(0));
// Resources are Changed when first added
world.increment_change_tick();
// This is required to update world::last_change_tick
world.clear_trackers();
let mut r = world.resource_mut::<R2>();
assert!(!r.is_changed(), "Resource must begin unchanged.");
r.set_if_neq(R2(0));
assert!(
!r.is_changed(),
"Resource must not be changed after setting to the same value."
);
r.set_if_neq(R2(3));
assert!(
r.is_changed(),
"Resource must be changed after setting to a different value."
);
}
#[test]
fn mut_untyped_to_reflect() {
let last_run = Tick::new(2);
let this_run = Tick::new(3);
let mut component_ticks = ComponentTicks {
added: Tick::new(1),
changed: Tick::new(2),
};
let ticks = TicksMut {
added: &mut component_ticks.added,
changed: &mut component_ticks.changed,
last_run,
this_run,
};
let mut value: i32 = 5;
let value = MutUntyped {
value: PtrMut::from(&mut value),
ticks,
};
let reflect_from_ptr = <ReflectFromPtr as FromType<i32>>::from_type();
let mut new = value.map_unchanged(|ptr| {
// SAFETY: The underlying type of `ptr` matches `reflect_from_ptr`.
let value = unsafe { reflect_from_ptr.as_reflect_ptr_mut(ptr) };
value
});
assert!(!new.is_changed());
new.reflect_mut();
assert!(new.is_changed());
}
}