bevy/crates/bevy_render/src/lib.rs
atlv 636e99c9fb
cleanup bevy_render/lib.rs (#16481)
# Objective

- Refactor

## Solution

- Refactor

## Testing

- Ran 3d_scene

---

## Migration Guide

`RenderCreation::Manual` variant fields are now wrapped in a struct
called `RenderResources`
2024-11-22 22:32:04 +00:00

512 lines
20 KiB
Rust

// FIXME(15321): solve CI failures, then replace with `#![expect()]`.
#![allow(missing_docs, reason = "Not all docs are written yet, see #3492.")]
#![allow(unsafe_code)]
// `rustdoc_internals` is needed for `#[doc(fake_variadics)]`
#![allow(internal_features)]
#![cfg_attr(any(docsrs, docsrs_dep), feature(doc_auto_cfg, rustdoc_internals))]
#![doc(
html_logo_url = "https://bevyengine.org/assets/icon.png",
html_favicon_url = "https://bevyengine.org/assets/icon.png"
)]
#[cfg(target_pointer_width = "16")]
compile_error!("bevy_render cannot compile for a 16-bit platform.");
extern crate alloc;
extern crate core;
pub mod alpha;
pub mod batching;
pub mod camera;
pub mod diagnostic;
pub mod extract_component;
pub mod extract_instances;
mod extract_param;
pub mod extract_resource;
pub mod globals;
pub mod gpu_component_array_buffer;
pub mod gpu_readback;
pub mod mesh;
#[cfg(not(target_arch = "wasm32"))]
pub mod pipelined_rendering;
pub mod primitives;
pub mod render_asset;
pub mod render_graph;
pub mod render_phase;
pub mod render_resource;
pub mod renderer;
pub mod settings;
mod spatial_bundle;
pub mod storage;
pub mod sync_component;
pub mod sync_world;
pub mod texture;
pub mod view;
/// The render prelude.
///
/// This includes the most common types in this crate, re-exported for your convenience.
#[expect(deprecated)]
pub mod prelude {
#[doc(hidden)]
pub use crate::{
alpha::AlphaMode,
camera::{
Camera, ClearColor, ClearColorConfig, OrthographicProjection, PerspectiveProjection,
Projection,
},
mesh::{
morph::MorphWeights, primitives::MeshBuilder, primitives::Meshable, Mesh, Mesh2d,
Mesh3d,
},
render_resource::Shader,
spatial_bundle::SpatialBundle,
texture::ImagePlugin,
view::{InheritedVisibility, Msaa, ViewVisibility, Visibility, VisibilityBundle},
ExtractSchedule,
};
}
use batching::gpu_preprocessing::BatchingPlugin;
use bevy_ecs::schedule::ScheduleBuildSettings;
use bevy_utils::prelude::default;
pub use extract_param::Extract;
use bevy_hierarchy::ValidParentCheckPlugin;
use bevy_window::{PrimaryWindow, RawHandleWrapperHolder};
use extract_resource::ExtractResourcePlugin;
use globals::GlobalsPlugin;
use render_asset::RenderAssetBytesPerFrame;
use renderer::{RenderDevice, RenderQueue};
use settings::RenderResources;
use sync_world::{
despawn_temporary_render_entities, entity_sync_system, SyncToRenderWorld, SyncWorldPlugin,
};
use crate::gpu_readback::GpuReadbackPlugin;
use crate::{
camera::CameraPlugin,
mesh::{MeshPlugin, MorphPlugin, RenderMesh},
render_asset::prepare_assets,
render_resource::{PipelineCache, Shader, ShaderLoader},
renderer::{render_system, RenderInstance, WgpuWrapper},
settings::RenderCreation,
storage::StoragePlugin,
view::{ViewPlugin, WindowRenderPlugin},
};
use alloc::sync::Arc;
use bevy_app::{App, AppLabel, Plugin, SubApp};
use bevy_asset::{load_internal_asset, AssetApp, AssetServer, Handle};
use bevy_ecs::{prelude::*, schedule::ScheduleLabel};
use bevy_utils::tracing::debug;
use core::ops::{Deref, DerefMut};
use std::sync::Mutex;
/// Contains the default Bevy rendering backend based on wgpu.
///
/// Rendering is done in a [`SubApp`], which exchanges data with the main app
/// between main schedule iterations.
///
/// Rendering can be executed between iterations of the main schedule,
/// or it can be executed in parallel with main schedule when
/// [`PipelinedRenderingPlugin`](pipelined_rendering::PipelinedRenderingPlugin) is enabled.
#[derive(Default)]
pub struct RenderPlugin {
pub render_creation: RenderCreation,
/// If `true`, disables asynchronous pipeline compilation.
/// This has no effect on macOS, Wasm, iOS, or without the `multi_threaded` feature.
pub synchronous_pipeline_compilation: bool,
}
/// The systems sets of the default [`App`] rendering schedule.
///
/// These can be useful for ordering, but you almost never want to add your systems to these sets.
#[derive(Debug, Hash, PartialEq, Eq, Clone, SystemSet)]
pub enum RenderSet {
/// This is used for applying the commands from the [`ExtractSchedule`]
ExtractCommands,
/// Prepare assets that have been created/modified/removed this frame.
PrepareAssets,
/// Create any additional views such as those used for shadow mapping.
ManageViews,
/// Queue drawable entities as phase items in render phases ready for
/// sorting (if necessary)
Queue,
/// A sub-set within [`Queue`](RenderSet::Queue) where mesh entity queue systems are executed. Ensures `prepare_assets::<RenderMesh>` is completed.
QueueMeshes,
// TODO: This could probably be moved in favor of a system ordering
// abstraction in `Render` or `Queue`
/// Sort the [`SortedRenderPhase`](render_phase::SortedRenderPhase)s and
/// [`BinKey`](render_phase::BinnedPhaseItem::BinKey)s here.
PhaseSort,
/// Prepare render resources from extracted data for the GPU based on their sorted order.
/// Create [`BindGroups`](render_resource::BindGroup) that depend on those data.
Prepare,
/// A sub-set within [`Prepare`](RenderSet::Prepare) for initializing buffers, textures and uniforms for use in bind groups.
PrepareResources,
/// Flush buffers after [`PrepareResources`](RenderSet::PrepareResources), but before [`PrepareBindGroups`](RenderSet::PrepareBindGroups).
PrepareResourcesFlush,
/// A sub-set within [`Prepare`](RenderSet::Prepare) for constructing bind groups, or other data that relies on render resources prepared in [`PrepareResources`](RenderSet::PrepareResources).
PrepareBindGroups,
/// Actual rendering happens here.
/// In most cases, only the render backend should insert resources here.
Render,
/// Cleanup render resources here.
Cleanup,
/// Final cleanup occurs: all entities will be despawned.
///
/// Runs after [`Cleanup`](RenderSet::Cleanup).
PostCleanup,
}
/// The main render schedule.
#[derive(ScheduleLabel, Debug, Hash, PartialEq, Eq, Clone)]
pub struct Render;
impl Render {
/// Sets up the base structure of the rendering [`Schedule`].
///
/// The sets defined in this enum are configured to run in order.
pub fn base_schedule() -> Schedule {
use RenderSet::*;
let mut schedule = Schedule::new(Self);
schedule.configure_sets(
(
ExtractCommands,
ManageViews,
Queue,
PhaseSort,
Prepare,
Render,
Cleanup,
PostCleanup,
)
.chain(),
);
schedule.configure_sets((ExtractCommands, PrepareAssets, Prepare).chain());
schedule.configure_sets(
QueueMeshes
.in_set(Queue)
.after(prepare_assets::<RenderMesh>),
);
schedule.configure_sets(
(PrepareResources, PrepareResourcesFlush, PrepareBindGroups)
.chain()
.in_set(Prepare),
);
schedule
}
}
/// Schedule which extract data from the main world and inserts it into the render world.
///
/// This step should be kept as short as possible to increase the "pipelining potential" for
/// running the next frame while rendering the current frame.
///
/// This schedule is run on the main world, but its buffers are not applied
/// until it is returned to the render world.
#[derive(ScheduleLabel, PartialEq, Eq, Debug, Clone, Hash)]
pub struct ExtractSchedule;
/// The simulation [`World`] of the application, stored as a resource.
///
/// This resource is only available during [`ExtractSchedule`] and not
/// during command application of that schedule.
/// See [`Extract`] for more details.
#[derive(Resource, Default)]
pub struct MainWorld(World);
impl Deref for MainWorld {
type Target = World;
fn deref(&self) -> &Self::Target {
&self.0
}
}
impl DerefMut for MainWorld {
fn deref_mut(&mut self) -> &mut Self::Target {
&mut self.0
}
}
pub mod graph {
use crate::render_graph::RenderLabel;
#[derive(Debug, Hash, PartialEq, Eq, Clone, RenderLabel)]
pub struct CameraDriverLabel;
}
#[derive(Resource)]
struct FutureRenderResources(Arc<Mutex<Option<RenderResources>>>);
/// A label for the rendering sub-app.
#[derive(Debug, Clone, Copy, Hash, PartialEq, Eq, AppLabel)]
pub struct RenderApp;
pub const INSTANCE_INDEX_SHADER_HANDLE: Handle<Shader> =
Handle::weak_from_u128(10313207077636615845);
pub const MATHS_SHADER_HANDLE: Handle<Shader> = Handle::weak_from_u128(10665356303104593376);
pub const COLOR_OPERATIONS_SHADER_HANDLE: Handle<Shader> =
Handle::weak_from_u128(1844674407370955161);
impl Plugin for RenderPlugin {
/// Initializes the renderer, sets up the [`RenderSet`] and creates the rendering sub-app.
fn build(&self, app: &mut App) {
app.init_asset::<Shader>()
.init_asset_loader::<ShaderLoader>();
match &self.render_creation {
RenderCreation::Manual(resources) => {
let future_render_resources_wrapper = Arc::new(Mutex::new(Some(resources.clone())));
app.insert_resource(FutureRenderResources(
future_render_resources_wrapper.clone(),
));
// SAFETY: Plugins should be set up on the main thread.
unsafe { initialize_render_app(app) };
}
RenderCreation::Automatic(render_creation) => {
if let Some(backends) = render_creation.backends {
let future_render_resources_wrapper = Arc::new(Mutex::new(None));
app.insert_resource(FutureRenderResources(
future_render_resources_wrapper.clone(),
));
let primary_window = app
.world_mut()
.query_filtered::<&RawHandleWrapperHolder, With<PrimaryWindow>>()
.get_single(app.world())
.ok()
.cloned();
let settings = render_creation.clone();
let async_renderer = async move {
let instance = wgpu::Instance::new(wgpu::InstanceDescriptor {
backends,
dx12_shader_compiler: settings.dx12_shader_compiler.clone(),
flags: settings.instance_flags,
gles_minor_version: settings.gles3_minor_version,
});
let surface = primary_window.and_then(|wrapper| {
let maybe_handle = wrapper.0.lock().expect(
"Couldn't get the window handle in time for renderer initialization",
);
if let Some(wrapper) = maybe_handle.as_ref() {
// SAFETY: Plugins should be set up on the main thread.
let handle = unsafe { wrapper.get_handle() };
Some(
instance
.create_surface(handle)
.expect("Failed to create wgpu surface"),
)
} else {
None
}
});
let request_adapter_options = wgpu::RequestAdapterOptions {
power_preference: settings.power_preference,
compatible_surface: surface.as_ref(),
..Default::default()
};
let (device, queue, adapter_info, render_adapter) =
renderer::initialize_renderer(
&instance,
&settings,
&request_adapter_options,
)
.await;
debug!("Configured wgpu adapter Limits: {:#?}", device.limits());
debug!("Configured wgpu adapter Features: {:#?}", device.features());
let mut future_render_resources_inner =
future_render_resources_wrapper.lock().unwrap();
*future_render_resources_inner = Some(RenderResources(
device,
queue,
adapter_info,
render_adapter,
RenderInstance(Arc::new(WgpuWrapper::new(instance))),
));
};
// In wasm, spawn a task and detach it for execution
#[cfg(target_arch = "wasm32")]
bevy_tasks::IoTaskPool::get()
.spawn_local(async_renderer)
.detach();
// Otherwise, just block for it to complete
#[cfg(not(target_arch = "wasm32"))]
futures_lite::future::block_on(async_renderer);
// SAFETY: Plugins should be set up on the main thread.
unsafe { initialize_render_app(app) };
}
}
};
app.add_plugins((
ValidParentCheckPlugin::<view::InheritedVisibility>::default(),
WindowRenderPlugin,
CameraPlugin,
ViewPlugin,
MeshPlugin,
GlobalsPlugin,
MorphPlugin,
BatchingPlugin,
SyncWorldPlugin,
StoragePlugin,
GpuReadbackPlugin::default(),
));
app.init_resource::<RenderAssetBytesPerFrame>()
.add_plugins(ExtractResourcePlugin::<RenderAssetBytesPerFrame>::default());
app.register_type::<alpha::AlphaMode>()
// These types cannot be registered in bevy_color, as it does not depend on the rest of Bevy
.register_type::<bevy_color::Color>()
.register_type::<primitives::Aabb>()
.register_type::<primitives::CascadesFrusta>()
.register_type::<primitives::CubemapFrusta>()
.register_type::<primitives::Frustum>()
.register_type::<SyncToRenderWorld>();
}
fn ready(&self, app: &App) -> bool {
app.world()
.get_resource::<FutureRenderResources>()
.and_then(|frr| frr.0.try_lock().map(|locked| locked.is_some()).ok())
.unwrap_or(true)
}
fn finish(&self, app: &mut App) {
load_internal_asset!(app, MATHS_SHADER_HANDLE, "maths.wgsl", Shader::from_wgsl);
load_internal_asset!(
app,
COLOR_OPERATIONS_SHADER_HANDLE,
"color_operations.wgsl",
Shader::from_wgsl
);
if let Some(future_render_resources) =
app.world_mut().remove_resource::<FutureRenderResources>()
{
let RenderResources(device, queue, adapter_info, render_adapter, instance) =
future_render_resources.0.lock().unwrap().take().unwrap();
app.insert_resource(device.clone())
.insert_resource(queue.clone())
.insert_resource(adapter_info.clone())
.insert_resource(render_adapter.clone());
let render_app = app.sub_app_mut(RenderApp);
render_app
.insert_resource(instance)
.insert_resource(PipelineCache::new(
device.clone(),
render_adapter.clone(),
self.synchronous_pipeline_compilation,
))
.insert_resource(device)
.insert_resource(queue)
.insert_resource(render_adapter)
.insert_resource(adapter_info)
.add_systems(
Render,
(|mut bpf: ResMut<RenderAssetBytesPerFrame>| {
bpf.reset();
})
.in_set(RenderSet::Cleanup),
);
}
}
}
/// A "scratch" world used to avoid allocating new worlds every frame when
/// swapping out the [`MainWorld`] for [`ExtractSchedule`].
#[derive(Resource, Default)]
struct ScratchMainWorld(World);
/// Executes the [`ExtractSchedule`] step of the renderer.
/// This updates the render world with the extracted ECS data of the current frame.
fn extract(main_world: &mut World, render_world: &mut World) {
// temporarily add the app world to the render world as a resource
let scratch_world = main_world.remove_resource::<ScratchMainWorld>().unwrap();
let inserted_world = core::mem::replace(main_world, scratch_world.0);
render_world.insert_resource(MainWorld(inserted_world));
render_world.run_schedule(ExtractSchedule);
// move the app world back, as if nothing happened.
let inserted_world = render_world.remove_resource::<MainWorld>().unwrap();
let scratch_world = core::mem::replace(main_world, inserted_world.0);
main_world.insert_resource(ScratchMainWorld(scratch_world));
}
/// # Safety
/// This function must be called from the main thread.
unsafe fn initialize_render_app(app: &mut App) {
app.init_resource::<ScratchMainWorld>();
let mut render_app = SubApp::new();
render_app.update_schedule = Some(Render.intern());
let mut extract_schedule = Schedule::new(ExtractSchedule);
// We skip applying any commands during the ExtractSchedule
// so commands can be applied on the render thread.
extract_schedule.set_build_settings(ScheduleBuildSettings {
auto_insert_apply_deferred: false,
..default()
});
extract_schedule.set_apply_final_deferred(false);
render_app
.add_schedule(extract_schedule)
.add_schedule(Render::base_schedule())
.init_resource::<render_graph::RenderGraph>()
.insert_resource(app.world().resource::<AssetServer>().clone())
.add_systems(ExtractSchedule, PipelineCache::extract_shaders)
.add_systems(
Render,
(
// This set applies the commands from the extract schedule while the render schedule
// is running in parallel with the main app.
apply_extract_commands.in_set(RenderSet::ExtractCommands),
(
PipelineCache::process_pipeline_queue_system.before(render_system),
render_system,
)
.in_set(RenderSet::Render),
despawn_temporary_render_entities.in_set(RenderSet::PostCleanup),
),
);
render_app.set_extract(|main_world, render_world| {
{
#[cfg(feature = "trace")]
let _stage_span = bevy_utils::tracing::info_span!("entity_sync").entered();
entity_sync_system(main_world, render_world);
}
// run extract schedule
extract(main_world, render_world);
});
let (sender, receiver) = bevy_time::create_time_channels();
render_app.insert_resource(sender);
app.insert_resource(receiver);
app.insert_sub_app(RenderApp, render_app);
}
/// Applies the commands from the extract schedule. This happens during
/// the render schedule rather than during extraction to allow the commands to run in parallel with the
/// main app when pipelined rendering is enabled.
fn apply_extract_commands(render_world: &mut World) {
render_world.resource_scope(|render_world, mut schedules: Mut<Schedules>| {
schedules
.get_mut(ExtractSchedule)
.unwrap()
.apply_deferred(render_world);
});
}