bevy/crates/bevy_pbr/src/render/pbr_transmission.wgsl
JMS55 fcd7c0fc3d
Exposure settings (adopted) (#11347)
Rebased and finished version of
https://github.com/bevyengine/bevy/pull/8407. Huge thanks to @GitGhillie
for adjusting all the examples, and the many other people who helped
write this PR (@superdump , @coreh , among others) :)

Fixes https://github.com/bevyengine/bevy/issues/8369

---

## Changelog
- Added a `brightness` control to `Skybox`.
- Added an `intensity` control to `EnvironmentMapLight`.
- Added `ExposureSettings` and `PhysicalCameraParameters` for
controlling exposure of 3D cameras.
- Removed the baked-in `DirectionalLight` exposure Bevy previously
hardcoded internally.

## Migration Guide
- If using a `Skybox` or `EnvironmentMapLight`, use the new `brightness`
and `intensity` controls to adjust their strength.
- All 3D scene will now have different apparent brightnesses due to Bevy
implementing proper exposure controls. You will have to adjust the
intensity of your lights and/or your camera exposure via the new
`ExposureSettings` component to compensate.

---------

Co-authored-by: Robert Swain <robert.swain@gmail.com>
Co-authored-by: GitGhillie <jillisnoordhoek@gmail.com>
Co-authored-by: Marco Buono <thecoreh@gmail.com>
Co-authored-by: vero <email@atlasdostal.com>
Co-authored-by: atlas dostal <rodol@rivalrebels.com>
2024-01-16 14:53:21 +00:00

190 lines
8.8 KiB
WebGPU Shading Language

#define_import_path bevy_pbr::transmission
#import bevy_pbr::{
lighting,
prepass_utils,
utils::{PI, interleaved_gradient_noise},
utils,
mesh_view_bindings as view_bindings,
};
#import bevy_core_pipeline::tonemapping::{
approximate_inverse_tone_mapping
};
fn specular_transmissive_light(world_position: vec4<f32>, frag_coord: vec3<f32>, view_z: f32, N: vec3<f32>, V: vec3<f32>, F0: vec3<f32>, ior: f32, thickness: f32, perceptual_roughness: f32, specular_transmissive_color: vec3<f32>, transmitted_environment_light_specular: vec3<f32>) -> vec3<f32> {
// Calculate the ratio between refaction indexes. Assume air/vacuum for the space outside the mesh
let eta = 1.0 / ior;
// Calculate incidence vector (opposite to view vector) and its dot product with the mesh normal
let I = -V;
let NdotI = dot(N, I);
// Calculate refracted direction using Snell's law
let k = 1.0 - eta * eta * (1.0 - NdotI * NdotI);
let T = eta * I - (eta * NdotI + sqrt(k)) * N;
// Calculate the exit position of the refracted ray, by propagating refacted direction through thickness
let exit_position = world_position.xyz + T * thickness;
// Transform exit_position into clip space
let clip_exit_position = view_bindings::view.view_proj * vec4<f32>(exit_position, 1.0);
// Scale / offset position so that coordinate is in right space for sampling transmissive background texture
let offset_position = (clip_exit_position.xy / clip_exit_position.w) * vec2<f32>(0.5, -0.5) + 0.5;
// Fetch background color
var background_color: vec4<f32>;
if perceptual_roughness == 0.0 {
// If the material has zero roughness, we can use a faster approach without the blur
background_color = fetch_transmissive_background_non_rough(offset_position, frag_coord);
} else {
background_color = fetch_transmissive_background(offset_position, frag_coord, view_z, perceptual_roughness);
}
// Compensate for exposure, since the background color is coming from an already exposure-adjusted texture
background_color = vec4(background_color.rgb / view_bindings::view.exposure, background_color.a);
// Dot product of the refracted direction with the exit normal (Note: We assume the exit normal is the entry normal but inverted)
let MinusNdotT = dot(-N, T);
// Calculate 1.0 - fresnel factor (how much light is _NOT_ reflected, i.e. how much is transmitted)
let F = vec3(1.0) - lighting::fresnel(F0, MinusNdotT);
// Calculate final color by applying fresnel multiplied specular transmissive color to a mix of background color and transmitted specular environment light
return F * specular_transmissive_color * mix(transmitted_environment_light_specular, background_color.rgb, background_color.a);
}
fn fetch_transmissive_background_non_rough(offset_position: vec2<f32>, frag_coord: vec3<f32>) -> vec4<f32> {
var background_color = textureSampleLevel(
view_bindings::view_transmission_texture,
view_bindings::view_transmission_sampler,
offset_position,
0.0
);
#ifdef DEPTH_PREPASS
#ifndef WEBGL2
// Use depth prepass data to reject values that are in front of the current fragment
if prepass_utils::prepass_depth(vec4<f32>(offset_position * view_bindings::view.viewport.zw, 0.0, 0.0), 0u) > frag_coord.z {
background_color.a = 0.0;
}
#endif
#endif
#ifdef TONEMAP_IN_SHADER
background_color = approximate_inverse_tone_mapping(background_color, view_bindings::view.color_grading);
#endif
return background_color;
}
fn fetch_transmissive_background(offset_position: vec2<f32>, frag_coord: vec3<f32>, view_z: f32, perceptual_roughness: f32) -> vec4<f32> {
// Calculate view aspect ratio, used to scale offset so that it's proportionate
let aspect = view_bindings::view.viewport.z / view_bindings::view.viewport.w;
// Calculate how “blurry” the transmission should be.
// Blur is more or less eyeballed to look approximately “right”, since the “correct”
// approach would involve projecting many scattered rays and figuring out their individual
// exit positions. IRL, light rays can be scattered when entering/exiting a material (due to
// roughness) or inside the material (due to subsurface scattering). Here, we only consider
// the first scenario.
//
// Blur intensity is:
// - proportional to the square of `perceptual_roughness`
// - proportional to the inverse of view z
let blur_intensity = (perceptual_roughness * perceptual_roughness) / view_z;
#ifdef SCREEN_SPACE_SPECULAR_TRANSMISSION_BLUR_TAPS
let num_taps = #{SCREEN_SPACE_SPECULAR_TRANSMISSION_BLUR_TAPS}; // Controlled by the `Camera3d::screen_space_specular_transmission_quality` property
#else
let num_taps = 8; // Fallback to 8 taps, if not specified
#endif
let num_spirals = i32(ceil(f32(num_taps) / 8.0));
#ifdef TEMPORAL_JITTER
let random_angle = interleaved_gradient_noise(frag_coord.xy, view_bindings::globals.frame_count);
#else
let random_angle = interleaved_gradient_noise(frag_coord.xy, 0u);
#endif
// Pixel checkerboard pattern (helps make the interleaved gradient noise pattern less visible)
let pixel_checkboard = (
#ifdef TEMPORAL_JITTER
// 0 or 1 on even/odd pixels, alternates every frame
(i32(frag_coord.x) + i32(frag_coord.y) + i32(view_bindings::globals.frame_count)) % 2
#else
// 0 or 1 on even/odd pixels
(i32(frag_coord.x) + i32(frag_coord.y)) % 2
#endif
);
var result = vec4<f32>(0.0);
for (var i: i32 = 0; i < num_taps; i = i + 1) {
let current_spiral = (i >> 3u);
let angle = (random_angle + f32(current_spiral) / f32(num_spirals)) * 2.0 * PI;
let m = vec2(sin(angle), cos(angle));
let rotation_matrix = mat2x2(
m.y, -m.x,
m.x, m.y
);
// Get spiral offset
var spiral_offset: vec2<f32>;
switch i & 7 {
// https://www.iryoku.com/next-generation-post-processing-in-call-of-duty-advanced-warfare (slides 120-135)
// TODO: Figure out a more reasonable way of doing this, as WGSL
// seems to only allow constant indexes into constant arrays at the moment.
// The downstream shader compiler should be able to optimize this into a single
// constant when unrolling the for loop, but it's still not ideal.
case 0: { spiral_offset = utils::SPIRAL_OFFSET_0_; } // Note: We go even first and then odd, so that the lowest
case 1: { spiral_offset = utils::SPIRAL_OFFSET_2_; } // quality possible (which does 4 taps) still does a full spiral
case 2: { spiral_offset = utils::SPIRAL_OFFSET_4_; } // instead of just the first half of it
case 3: { spiral_offset = utils::SPIRAL_OFFSET_6_; }
case 4: { spiral_offset = utils::SPIRAL_OFFSET_1_; }
case 5: { spiral_offset = utils::SPIRAL_OFFSET_3_; }
case 6: { spiral_offset = utils::SPIRAL_OFFSET_5_; }
case 7: { spiral_offset = utils::SPIRAL_OFFSET_7_; }
default: {}
}
// Make each consecutive spiral slightly smaller than the previous one
spiral_offset *= 1.0 - (0.5 * f32(current_spiral + 1) / f32(num_spirals));
// Rotate and correct for aspect ratio
let rotated_spiral_offset = (rotation_matrix * spiral_offset) * vec2(1.0, aspect);
// Calculate final offset position, with blur and spiral offset
let modified_offset_position = offset_position + rotated_spiral_offset * blur_intensity * (1.0 - f32(pixel_checkboard) * 0.1);
// Sample the view transmission texture at the offset position + noise offset, to get the background color
var sample = textureSampleLevel(
view_bindings::view_transmission_texture,
view_bindings::view_transmission_sampler,
modified_offset_position,
0.0
);
#ifdef DEPTH_PREPASS
#ifndef WEBGL2
// Use depth prepass data to reject values that are in front of the current fragment
if prepass_utils::prepass_depth(vec4<f32>(modified_offset_position * view_bindings::view.viewport.zw, 0.0, 0.0), 0u) > frag_coord.z {
sample = vec4<f32>(0.0);
}
#endif
#endif
// As blur intensity grows higher, gradually limit *very bright* color RGB values towards a
// maximum length of 1.0 to prevent stray “firefly” pixel artifacts. This can potentially make
// very strong emissive meshes appear much dimmer, but the artifacts are noticeable enough to
// warrant this treatment.
let normalized_rgb = normalize(sample.rgb);
result += vec4(min(sample.rgb, normalized_rgb / saturate(blur_intensity / 2.0)), sample.a);
}
result /= f32(num_taps);
#ifdef TONEMAP_IN_SHADER
result = approximate_inverse_tone_mapping(result, view_bindings::view.color_grading);
#endif
return result;
}