No description
Find a file
Nuutti Kotivuori 3d79dc4cdc
Unify FixedTime and Time while fixing several problems (#8964)
# Objective

Current `FixedTime` and `Time` have several problems. This pull aims to
fix many of them at once.

- If there is a longer pause between app updates, time will jump forward
a lot at once and fixed time will iterate on `FixedUpdate` for a large
number of steps. If the pause is merely seconds, then this will just
mean jerkiness and possible unexpected behaviour in gameplay. If the
pause is hours/days as with OS suspend, the game will appear to freeze
until it has caught up with real time.
- If calculating a fixed step takes longer than specified fixed step
period, the game will enter a death spiral where rendering each frame
takes longer and longer due to more and more fixed step updates being
run per frame and the game appears to freeze.
- There is no way to see current fixed step elapsed time inside fixed
steps. In order to track this, the game designer needs to add a custom
system inside `FixedUpdate` that calculates elapsed or step count in a
resource.
- Access to delta time inside fixed step is `FixedStep::period` rather
than `Time::delta`. This, coupled with the issue that `Time::elapsed`
isn't available at all for fixed steps, makes it that time requiring
systems are either implemented to be run in `FixedUpdate` or `Update`,
but rarely work in both.
- Fixes #8800 
- Fixes #8543 
- Fixes #7439
- Fixes #5692

## Solution

- Create a generic `Time<T>` clock that has no processing logic but
which can be instantiated for multiple usages. This is also exposed for
users to add custom clocks.
- Create three standard clocks, `Time<Real>`, `Time<Virtual>` and
`Time<Fixed>`, all of which contain their individual logic.
- Create one "default" clock, which is just `Time` (or `Time<()>`),
which will be overwritten from `Time<Virtual>` on each update, and
`Time<Fixed>` inside `FixedUpdate` schedule. This way systems that do
not care specifically which time they track can work both in `Update`
and `FixedUpdate` without changes and the behaviour is intuitive.
- Add `max_delta` to virtual time update, which limits how much can be
added to virtual time by a single update. This fixes both the behaviour
after a long freeze, and also the death spiral by limiting how many
fixed timestep iterations there can be per update. Possible future work
could be adding `max_accumulator` to add a sort of "leaky bucket" time
processing to possibly smooth out jumps in time while keeping frame rate
stable.
- Many minor tweaks and clarifications to the time functions and their
documentation.

## Changelog

- `Time::raw_delta()`, `Time::raw_elapsed()` and related methods are
moved to `Time<Real>::delta()` and `Time<Real>::elapsed()` and now match
`Time` API
- `FixedTime` is now `Time<Fixed>` and matches `Time` API. 
- `Time<Fixed>` default timestep is now 64 Hz, or 15625 microseconds.
- `Time` inside `FixedUpdate` now reflects fixed timestep time, making
systems portable between `Update ` and `FixedUpdate`.
- `Time::pause()`, `Time::set_relative_speed()` and related methods must
now be called as `Time<Virtual>::pause()` etc.
- There is a new `max_delta` setting in `Time<Virtual>` that limits how
much the clock can jump by a single update. The default value is 0.25
seconds.
- Removed `on_fixed_timer()` condition as `on_timer()` does the right
thing inside `FixedUpdate` now.

## Migration Guide

- Change all `Res<Time>` instances that access `raw_delta()`,
`raw_elapsed()` and related methods to `Res<Time<Real>>` and `delta()`,
`elapsed()`, etc.
- Change access to `period` from `Res<FixedTime>` to `Res<Time<Fixed>>`
and use `delta()`.
- The default timestep has been changed from 60 Hz to 64 Hz. If you wish
to restore the old behaviour, use
`app.insert_resource(Time::<Fixed>::from_hz(60.0))`.
- Change `app.insert_resource(FixedTime::new(duration))` to
`app.insert_resource(Time::<Fixed>::from_duration(duration))`
- Change `app.insert_resource(FixedTime::new_from_secs(secs))` to
`app.insert_resource(Time::<Fixed>::from_seconds(secs))`
- Change `system.on_fixed_timer(duration)` to
`system.on_timer(duration)`. Timers in systems placed in `FixedUpdate`
schedule automatically use the fixed time clock.
- Change `ResMut<Time>` calls to `pause()`, `is_paused()`,
`set_relative_speed()` and related methods to `ResMut<Time<Virtual>>`
calls. The API is the same, with the exception that `relative_speed()`
will return the actual last ste relative speed, while
`effective_relative_speed()` returns 0.0 if the time is paused and
corresponds to the speed that was set when the update for the current
frame started.

## Todo

- [x] Update pull name and description
- [x] Top level documentation on usage
- [x] Fix examples
- [x] Decide on default `max_delta` value
- [x] Decide naming of the three clocks: is `Real`, `Virtual`, `Fixed`
good?
- [x] Decide if the three clock inner structures should be in prelude
- [x] Decide on best way to configure values at startup: is manually
inserting a new clock instance okay, or should there be config struct
separately?
- [x] Fix links in docs
- [x] Decide what should be public and what not
- [x] Decide how `wrap_period` should be handled when it is changed
- [x] ~~Add toggles to disable setting the clock as default?~~ No,
separate pull if needed.
- [x] Add tests
- [x] Reformat, ensure adheres to conventions etc.
- [x] Build documentation and see that it looks correct

## Contributors

Huge thanks to @alice-i-cecile and @maniwani while building this pull.
It was a shared effort!

---------

Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
Co-authored-by: Cameron <51241057+maniwani@users.noreply.github.com>
Co-authored-by: Jerome Humbert <djeedai@gmail.com>
2023-10-16 01:57:55 +00:00
.cargo Change recommended linker: zld to lld for MacOS (#7496) 2023-02-06 18:24:12 +00:00
.github wgpu 0.17 (#9302) 2023-10-09 20:15:24 +00:00
assets pbr shader cleanup (#10105) 2023-10-13 19:12:40 +00:00
benches Add inline(never) to bench systems (#9824) 2023-10-02 12:52:18 +00:00
crates Unify FixedTime and Time while fixing several problems (#8964) 2023-10-16 01:57:55 +00:00
docs Multiple Asset Sources (#9885) 2023-10-13 23:17:32 +00:00
docs-template Fix some typos (#9934) 2023-09-26 19:46:24 +00:00
errors Split ComputedVisibility into two components to allow for accurate change detection and speed up visibility propagation (#9497) 2023-09-01 13:00:18 +00:00
examples Unify FixedTime and Time while fixing several problems (#8964) 2023-10-16 01:57:55 +00:00
src Schedule-First: the new and improved add_systems (#8079) 2023-03-18 01:45:34 +00:00
tests Deferred Renderer (#9258) 2023-10-12 22:10:38 +00:00
tools hacks for running (and screenshotting) the examples in CI on a github runner (#9220) 2023-10-13 19:19:17 +00:00
.gitattributes Enforce linux-style line endings for .rs and .toml (#3197) 2021-11-26 21:05:35 +00:00
.gitignore Bevy Asset V2 (#8624) 2023-09-07 02:07:27 +00:00
Cargo.toml Unify FixedTime and Time while fixing several problems (#8964) 2023-10-16 01:57:55 +00:00
CHANGELOG.md Add 0.11.0 changelog (#9078) 2023-07-09 08:09:25 +00:00
clippy.toml Finish documenting bevy_gilrs (#10010) 2023-10-04 21:10:20 +00:00
CODE_OF_CONDUCT.md Update CODE_OF_CONDUCT.md 2020-08-19 20:25:58 +01:00
CONTRIBUTING.md Add examples page build instructions (#8413) 2023-04-17 16:13:24 +00:00
CREDITS.md Add morph targets (#8158) 2023-06-22 20:00:01 +00:00
deny.toml Update cargo deny configuration (#8734) 2023-06-01 16:29:45 +00:00
LICENSE-APACHE Let the project page support GitHub's new ability to display open source licenses (#4966) 2022-06-08 17:55:57 +00:00
LICENSE-MIT Let the project page support GitHub's new ability to display open source licenses (#4966) 2022-06-08 17:55:57 +00:00
README.md add and fix shields in Readmes (#9993) 2023-10-15 00:52:31 +00:00
rustfmt.toml Cargo fmt with unstable features (#1903) 2021-04-21 23:19:34 +00:00

Bevy

License Crates.io Downloads Docs CI Discord

What is Bevy?

Bevy is a refreshingly simple data-driven game engine built in Rust. It is free and open-source forever!

WARNING

Bevy is still in the early stages of development. Important features are missing. Documentation is sparse. A new version of Bevy containing breaking changes to the API is released approximately once every 3 months. We provide migration guides, but we can't guarantee migrations will always be easy. Use only if you are willing to work in this environment.

MSRV: Bevy relies heavily on improvements in the Rust language and compiler. As a result, the Minimum Supported Rust Version (MSRV) is generally close to "the latest stable release" of Rust.

Design Goals

  • Capable: Offer a complete 2D and 3D feature set
  • Simple: Easy for newbies to pick up, but infinitely flexible for power users
  • Data Focused: Data-oriented architecture using the Entity Component System paradigm
  • Modular: Use only what you need. Replace what you don't like
  • Fast: App logic should run quickly, and when possible, in parallel
  • Productive: Changes should compile quickly ... waiting isn't fun

About

  • Features: A quick overview of Bevy's features.
  • News: A development blog that covers our progress, plans and shiny new features.

Docs

  • The Bevy Book: Bevy's official documentation. The best place to start learning Bevy.
  • Bevy Rust API Docs: Bevy's Rust API docs, which are automatically generated from the doc comments in this repo.
  • Official Examples: Bevy's dedicated, runnable examples, which are great for digging into specific concepts.
  • Community-Made Learning Resources: More tutorials, documentation, and examples made by the Bevy community.

Community

Before contributing or participating in discussions with the community, you should familiarize yourself with our Code of Conduct.

  • Discord: Bevy's official discord server.
  • Reddit: Bevy's official subreddit.
  • GitHub Discussions: The best place for questions about Bevy, answered right here!
  • Bevy Assets: A collection of awesome Bevy projects, tools, plugins and learning materials.

If you'd like to help build Bevy, check out the Contributor's Guide. For simple problems, feel free to open an issue or PR and tackle it yourself!

For more complex architecture decisions and experimental mad science, please open an RFC (Request For Comments) so we can brainstorm together effectively!

Getting Started

We recommend checking out The Bevy Book for a full tutorial.

Follow the Setup guide to ensure your development environment is set up correctly. Once set up, you can quickly try out the examples by cloning this repo and running the following commands:

# Switch to the correct version (latest release, default is main development branch)
git checkout latest
# Runs the "breakout" example
cargo run --example breakout

To draw a window with standard functionality enabled, use:

use bevy::prelude::*;

fn main(){
  App::new()
    .add_plugins(DefaultPlugins)
    .run();
}

Fast Compiles

Bevy can be built just fine using default configuration on stable Rust. However for really fast iterative compiles, you should enable the "fast compiles" setup by following the instructions here.

Libraries Used

Bevy is only possible because of the hard work put into these foundational technologies:

  • wgpu: modern / low-level / cross-platform graphics library based on the WebGPU API.
  • glam-rs: a simple and fast 3D math library for games and graphics
  • winit: cross-platform window creation and management in Rust

Bevy Cargo Features

This list outlines the different cargo features supported by Bevy. These allow you to customize the Bevy feature set for your use-case.

Third Party Plugins

Plugins are very welcome to extend Bevy's features. Guidelines are available to help integration and usage.

Thanks and Alternatives

Additionally, we would like to thank the Amethyst, macroquad, coffee, ggez, Fyrox, and Piston projects for providing solid examples of game engine development in Rust. If you are looking for a Rust game engine, it is worth considering all of your options. Each engine has different design goals, and some will likely resonate with you more than others.

This project is tested with BrowserStack.

License

Bevy is free, open source and permissively licensed! Except where noted (below and/or in individual files), all code in this repository is dual-licensed under either:

at your option. This means you can select the license you prefer! This dual-licensing approach is the de-facto standard in the Rust ecosystem and there are very good reasons to include both.

Some of the engine's code carries additional copyright notices and license terms due to their external origins. These are generally BSD-like, but exact details vary by crate: If the README of a crate contains a 'License' header (or similar), the additional copyright notices and license terms applicable to that crate will be listed. The above licensing requirement still applies to contributions to those crates, and sections of those crates will carry those license terms. The license field of each crate will also reflect this. For example, bevy_mikktspace has code under the Zlib license (as well as a copyright notice when choosing the MIT license).

The assets included in this repository (for our examples) typically fall under different open licenses. These will not be included in your game (unless copied in by you), and they are not distributed in the published bevy crates. See CREDITS.md for the details of the licenses of those files.

Your contributions

Unless you explicitly state otherwise, any contribution intentionally submitted for inclusion in the work by you, as defined in the Apache-2.0 license, shall be dual licensed as above, without any additional terms or conditions.