bevy/crates/bevy_animation/src/lib.rs
Carter Anderson af10aa38aa
AnimatedField and Rework Evaluators (#16484)
# Objective

Animating component fields requires too much boilerplate at the moment:

```rust
#[derive(Reflect)]
struct FontSizeProperty;

impl AnimatableProperty for FontSizeProperty {
    type Component = TextFont;

    type Property = f32;

    fn get_mut(component: &mut Self::Component) -> Option<&mut Self::Property> {
        Some(&mut component.font_size)
    }
}

animation_clip.add_curve_to_target(
    animation_target_id,
    AnimatableKeyframeCurve::new(
        [0.0, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0]
            .into_iter()
            .zip([24.0, 80.0, 24.0, 80.0, 24.0, 80.0, 24.0]),
    )
    .map(AnimatableCurve::<FontSizeProperty, _>::from_curve)
    .expect("should be able to build translation curve because we pass in valid samples"),
);
```

## Solution

This adds `AnimatedField` and an `animated_field!` macro, enabling the
following:

```rust
animation_clip.add_curve_to_target(
    animation_target_id,
    AnimatableCurve::new(
        animated_field!(TextFont::font_size),
        AnimatableKeyframeCurve::new(
            [0.0, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0]
                .into_iter()
                .zip([24.0, 80.0, 24.0, 80.0, 24.0, 80.0, 24.0]),
        )
        .expect(
            "should be able to build translation curve because we pass in valid samples",
        ),
    ),
);
```

This required reworking the internals a bit, namely stripping out a lot
of the `Reflect` usage, as that implementation was fundamentally
incompatible with the `AnimatedField` pattern. `Reflect` was being used
in this context just to downcast traits. But we can get downcasting
behavior without the `Reflect` requirement by implementing `Downcast`
for `AnimationCurveEvaluator`.

This also reworks "evaluator identity" to support either a (Component /
Field) pair, or a TypeId. This allows properties to reuse evaluators,
even if they have different accessor methods. The "contract" here is
that for a given (Component / Field) pair, the accessor will return the
same value. Fields are identified by their Reflect-ed field index. The
(TypeId, usize) is prehashed and cached to optimize for lookup speed.

This removes the built-in hard-coded TranslationCurve / RotationCurve /
ScaleCurve in favor of AnimatableField.

---------

Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
2024-11-27 22:19:55 +00:00

1674 lines
61 KiB
Rust

#![cfg_attr(docsrs, feature(doc_auto_cfg))]
#![forbid(unsafe_code)]
#![doc(
html_logo_url = "https://bevyengine.org/assets/icon.png",
html_favicon_url = "https://bevyengine.org/assets/icon.png"
)]
//! Animation for the game engine Bevy
extern crate alloc;
pub mod animatable;
pub mod animation_curves;
pub mod gltf_curves;
pub mod graph;
pub mod transition;
mod util;
use core::{
any::TypeId,
cell::RefCell,
fmt::Debug,
hash::{Hash, Hasher},
iter, slice,
};
use graph::AnimationNodeType;
use prelude::AnimationCurveEvaluator;
use crate::{
graph::{AnimationGraphHandle, ThreadedAnimationGraphs},
prelude::EvaluatorId,
};
use bevy_app::{Animation, App, Plugin, PostUpdate};
use bevy_asset::{Asset, AssetApp, Assets};
use bevy_core::Name;
use bevy_ecs::{
entity::{VisitEntities, VisitEntitiesMut},
prelude::*,
reflect::{ReflectMapEntities, ReflectVisitEntities, ReflectVisitEntitiesMut},
world::EntityMutExcept,
};
use bevy_math::FloatOrd;
use bevy_reflect::{prelude::ReflectDefault, Reflect, TypePath};
use bevy_time::Time;
use bevy_transform::TransformSystem;
use bevy_utils::{
hashbrown::HashMap,
tracing::{trace, warn},
NoOpHash, PreHashMap, PreHashMapExt, TypeIdMap,
};
use petgraph::graph::NodeIndex;
use serde::{Deserialize, Serialize};
use thread_local::ThreadLocal;
use uuid::Uuid;
/// The animation prelude.
///
/// This includes the most common types in this crate, re-exported for your convenience.
pub mod prelude {
#[doc(hidden)]
pub use crate::{
animatable::*, animation_curves::*, graph::*, transition::*, AnimationClip,
AnimationPlayer, AnimationPlugin, VariableCurve,
};
}
use crate::{
animation_curves::AnimationCurve,
graph::{AnimationGraph, AnimationGraphAssetLoader, AnimationNodeIndex},
transition::{advance_transitions, expire_completed_transitions, AnimationTransitions},
};
use alloc::sync::Arc;
/// The [UUID namespace] of animation targets (e.g. bones).
///
/// [UUID namespace]: https://en.wikipedia.org/wiki/Universally_unique_identifier#Versions_3_and_5_(namespace_name-based)
pub static ANIMATION_TARGET_NAMESPACE: Uuid = Uuid::from_u128(0x3179f519d9274ff2b5966fd077023911);
/// Contains an [animation curve] which is used to animate a property of an entity.
///
/// [animation curve]: AnimationCurve
#[derive(Debug, TypePath)]
pub struct VariableCurve(pub Box<dyn AnimationCurve>);
impl Clone for VariableCurve {
fn clone(&self) -> Self {
Self(AnimationCurve::clone_value(&*self.0))
}
}
impl VariableCurve {
/// Create a new [`VariableCurve`] from an [animation curve].
///
/// [animation curve]: AnimationCurve
pub fn new(animation_curve: impl AnimationCurve) -> Self {
Self(Box::new(animation_curve))
}
}
/// A list of [`VariableCurve`]s and the [`AnimationTargetId`]s to which they
/// apply.
///
/// Because animation clips refer to targets by UUID, they can target any
/// [`AnimationTarget`] with that ID.
#[derive(Asset, Reflect, Clone, Debug, Default)]
pub struct AnimationClip {
// This field is ignored by reflection because AnimationCurves can contain things that are not reflect-able
#[reflect(ignore)]
curves: AnimationCurves,
events: AnimationEvents,
duration: f32,
}
#[derive(Reflect, Debug, Clone)]
struct TimedAnimationEvent {
time: f32,
event: AnimationEvent,
}
#[derive(Reflect, Debug, Clone)]
struct AnimationEvent {
#[reflect(ignore)]
trigger: AnimationEventFn,
}
impl AnimationEvent {
fn trigger(&self, commands: &mut Commands, entity: Entity, time: f32, weight: f32) {
(self.trigger.0)(commands, entity, time, weight);
}
}
#[derive(Reflect, Clone)]
#[reflect(opaque)]
struct AnimationEventFn(Arc<dyn Fn(&mut Commands, Entity, f32, f32) + Send + Sync>);
impl Default for AnimationEventFn {
fn default() -> Self {
Self(Arc::new(|_commands, _entity, _time, _weight| {}))
}
}
impl Debug for AnimationEventFn {
fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result {
f.debug_tuple("AnimationEventFn").finish()
}
}
#[derive(Reflect, Debug, PartialEq, Eq, PartialOrd, Ord, Hash, Clone)]
enum AnimationEventTarget {
Root,
Node(AnimationTargetId),
}
type AnimationEvents = HashMap<AnimationEventTarget, Vec<TimedAnimationEvent>>;
/// A mapping from [`AnimationTargetId`] (e.g. bone in a skinned mesh) to the
/// animation curves.
pub type AnimationCurves = HashMap<AnimationTargetId, Vec<VariableCurve>, NoOpHash>;
/// A unique [UUID] for an animation target (e.g. bone in a skinned mesh).
///
/// The [`AnimationClip`] asset and the [`AnimationTarget`] component both use
/// this to refer to targets (e.g. bones in a skinned mesh) to be animated.
///
/// When importing an armature or an animation clip, asset loaders typically use
/// the full path name from the armature to the bone to generate these UUIDs.
/// The ID is unique to the full path name and based only on the names. So, for
/// example, any imported armature with a bone at the root named `Hips` will
/// assign the same [`AnimationTargetId`] to its root bone. Likewise, any
/// imported animation clip that animates a root bone named `Hips` will
/// reference the same [`AnimationTargetId`]. Any animation is playable on any
/// armature as long as the bone names match, which allows for easy animation
/// retargeting.
///
/// Note that asset loaders generally use the *full* path name to generate the
/// [`AnimationTargetId`]. Thus a bone named `Chest` directly connected to a
/// bone named `Hips` will have a different ID from a bone named `Chest` that's
/// connected to a bone named `Stomach`.
///
/// [UUID]: https://en.wikipedia.org/wiki/Universally_unique_identifier
#[derive(Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Reflect, Debug, Serialize, Deserialize)]
pub struct AnimationTargetId(pub Uuid);
impl Hash for AnimationTargetId {
fn hash<H: Hasher>(&self, state: &mut H) {
let (hi, lo) = self.0.as_u64_pair();
state.write_u64(hi ^ lo);
}
}
/// An entity that can be animated by an [`AnimationPlayer`].
///
/// These are frequently referred to as *bones* or *joints*, because they often
/// refer to individually-animatable parts of an armature.
///
/// Asset loaders for armatures are responsible for adding these as necessary.
/// Typically, they're generated from hashed versions of the entire name path
/// from the root of the armature to the bone. See the [`AnimationTargetId`]
/// documentation for more details.
///
/// By convention, asset loaders add [`AnimationTarget`] components to the
/// descendants of an [`AnimationPlayer`], as well as to the [`AnimationPlayer`]
/// entity itself, but Bevy doesn't require this in any way. So, for example,
/// it's entirely possible for an [`AnimationPlayer`] to animate a target that
/// it isn't an ancestor of. If you add a new bone to or delete a bone from an
/// armature at runtime, you may want to update the [`AnimationTarget`]
/// component as appropriate, as Bevy won't do this automatically.
///
/// Note that each entity can only be animated by one animation player at a
/// time. However, you can change [`AnimationTarget`]'s `player` property at
/// runtime to change which player is responsible for animating the entity.
#[derive(Clone, Copy, Component, Reflect, VisitEntities, VisitEntitiesMut)]
#[reflect(Component, MapEntities, VisitEntities, VisitEntitiesMut)]
pub struct AnimationTarget {
/// The ID of this animation target.
///
/// Typically, this is derived from the path.
#[visit_entities(ignore)]
pub id: AnimationTargetId,
/// The entity containing the [`AnimationPlayer`].
pub player: Entity,
}
impl AnimationClip {
#[inline]
/// [`VariableCurve`]s for each animation target. Indexed by the [`AnimationTargetId`].
pub fn curves(&self) -> &AnimationCurves {
&self.curves
}
#[inline]
/// Get mutable references of [`VariableCurve`]s for each animation target. Indexed by the [`AnimationTargetId`].
pub fn curves_mut(&mut self) -> &mut AnimationCurves {
&mut self.curves
}
/// Gets the curves for a single animation target.
///
/// Returns `None` if this clip doesn't animate the target.
#[inline]
pub fn curves_for_target(
&self,
target_id: AnimationTargetId,
) -> Option<&'_ Vec<VariableCurve>> {
self.curves.get(&target_id)
}
/// Gets mutable references of the curves for a single animation target.
///
/// Returns `None` if this clip doesn't animate the target.
#[inline]
pub fn curves_for_target_mut(
&mut self,
target_id: AnimationTargetId,
) -> Option<&'_ mut Vec<VariableCurve>> {
self.curves.get_mut(&target_id)
}
/// Duration of the clip, represented in seconds.
#[inline]
pub fn duration(&self) -> f32 {
self.duration
}
/// Set the duration of the clip in seconds.
#[inline]
pub fn set_duration(&mut self, duration_sec: f32) {
self.duration = duration_sec;
}
/// Adds an [`AnimationCurve`] to an [`AnimationTarget`] named by an
/// [`AnimationTargetId`].
///
/// If the curve extends beyond the current duration of this clip, this
/// method lengthens this clip to include the entire time span that the
/// curve covers.
///
/// More specifically:
/// - This clip will be sampled on the interval `[0, duration]`.
/// - Each curve in the clip is sampled by first clamping the sample time to its [domain].
/// - Curves that extend forever never contribute to the duration.
///
/// For example, a curve with domain `[2, 5]` will extend the clip to cover `[0, 5]`
/// when added and will produce the same output on the entire interval `[0, 2]` because
/// these time values all get clamped to `2`.
///
/// By contrast, a curve with domain `[-10, ∞]` will never extend the clip duration when
/// added and will be sampled only on `[0, duration]`, ignoring all negative time values.
///
/// [domain]: AnimationCurve::domain
pub fn add_curve_to_target(
&mut self,
target_id: AnimationTargetId,
curve: impl AnimationCurve,
) {
// Update the duration of the animation by this curve duration if it's longer
let end = curve.domain().end();
if end.is_finite() {
self.duration = self.duration.max(end);
}
self.curves
.entry(target_id)
.or_default()
.push(VariableCurve::new(curve));
}
/// Like [`add_curve_to_target`], but adding a [`VariableCurve`] directly.
///
/// Under normal circumstances, that method is generally more convenient.
///
/// [`add_curve_to_target`]: AnimationClip::add_curve_to_target
pub fn add_variable_curve_to_target(
&mut self,
target_id: AnimationTargetId,
variable_curve: VariableCurve,
) {
let end = variable_curve.0.domain().end();
if end.is_finite() {
self.duration = self.duration.max(end);
}
self.curves
.entry(target_id)
.or_default()
.push(variable_curve);
}
/// Add a untargeted [`Event`] to this [`AnimationClip`].
///
/// The `event` will be cloned and triggered on the [`AnimationPlayer`] entity once the `time` (in seconds)
/// is reached in the animation.
///
/// See also [`add_event_to_target`](Self::add_event_to_target).
pub fn add_event(&mut self, time: f32, event: impl Event + Clone) {
self.add_event_fn(
time,
move |commands: &mut Commands, entity: Entity, _time: f32, _weight: f32| {
commands.entity(entity).trigger(event.clone());
},
);
}
/// Add an [`Event`] to an [`AnimationTarget`] named by an [`AnimationTargetId`].
///
/// The `event` will be cloned and triggered on the entity matching the target once the `time` (in seconds)
/// is reached in the animation.
///
/// Use [`add_event`](Self::add_event) instead if you don't have a specific target.
pub fn add_event_to_target(
&mut self,
target_id: AnimationTargetId,
time: f32,
event: impl Event + Clone,
) {
self.add_event_fn_to_target(
target_id,
time,
move |commands: &mut Commands, entity: Entity, _time: f32, _weight: f32| {
commands.entity(entity).trigger(event.clone());
},
);
}
/// Add a untargeted event function to this [`AnimationClip`].
///
/// The `func` will trigger on the [`AnimationPlayer`] entity once the `time` (in seconds)
/// is reached in the animation.
///
/// For a simpler [`Event`]-based alternative, see [`AnimationClip::add_event`].
/// See also [`add_event_to_target`](Self::add_event_to_target).
///
/// ```
/// # use bevy_animation::AnimationClip;
/// # let mut clip = AnimationClip::default();
/// clip.add_event_fn(1.0, |commands, entity, time, weight| {
/// println!("Animation Event Triggered {entity:#?} at time {time} with weight {weight}");
/// })
/// ```
pub fn add_event_fn(
&mut self,
time: f32,
func: impl Fn(&mut Commands, Entity, f32, f32) + Send + Sync + 'static,
) {
self.add_event_internal(AnimationEventTarget::Root, time, func);
}
/// Add an event function to an [`AnimationTarget`] named by an [`AnimationTargetId`].
///
/// The `func` will trigger on the entity matching the target once the `time` (in seconds)
/// is reached in the animation.
///
/// For a simpler [`Event`]-based alternative, see [`AnimationClip::add_event_to_target`].
/// Use [`add_event`](Self::add_event) instead if you don't have a specific target.
///
/// ```
/// # use bevy_animation::{AnimationClip, AnimationTargetId};
/// # let mut clip = AnimationClip::default();
/// clip.add_event_fn_to_target(AnimationTargetId::from_iter(["Arm", "Hand"]), 1.0, |commands, entity, time, weight| {
/// println!("Animation Event Triggered {entity:#?} at time {time} with weight {weight}");
/// })
/// ```
pub fn add_event_fn_to_target(
&mut self,
target_id: AnimationTargetId,
time: f32,
func: impl Fn(&mut Commands, Entity, f32, f32) + Send + Sync + 'static,
) {
self.add_event_internal(AnimationEventTarget::Node(target_id), time, func);
}
fn add_event_internal(
&mut self,
target: AnimationEventTarget,
time: f32,
trigger_fn: impl Fn(&mut Commands, Entity, f32, f32) + Send + Sync + 'static,
) {
self.duration = self.duration.max(time);
let triggers = self.events.entry(target).or_default();
match triggers.binary_search_by_key(&FloatOrd(time), |e| FloatOrd(e.time)) {
Ok(index) | Err(index) => triggers.insert(
index,
TimedAnimationEvent {
time,
event: AnimationEvent {
trigger: AnimationEventFn(Arc::new(trigger_fn)),
},
},
),
}
}
}
/// Repetition behavior of an animation.
#[derive(Reflect, Debug, PartialEq, Eq, Copy, Clone, Default)]
pub enum RepeatAnimation {
/// The animation will finish after running once.
#[default]
Never,
/// The animation will finish after running "n" times.
Count(u32),
/// The animation will never finish.
Forever,
}
/// Why Bevy failed to evaluate an animation.
#[derive(Clone, Debug)]
pub enum AnimationEvaluationError {
/// The component to be animated isn't present on the animation target.
///
/// To fix this error, make sure the entity to be animated contains all
/// components that have animation curves.
ComponentNotPresent(TypeId),
/// The component to be animated was present, but the property on the
/// component wasn't present.
PropertyNotPresent(TypeId),
/// An internal error occurred in the implementation of
/// [`AnimationCurveEvaluator`].
///
/// You shouldn't ordinarily see this error unless you implemented
/// [`AnimationCurveEvaluator`] yourself. The contained [`TypeId`] is the ID
/// of the curve evaluator.
InconsistentEvaluatorImplementation(TypeId),
}
/// An animation that an [`AnimationPlayer`] is currently either playing or was
/// playing, but is presently paused.
///
/// An stopped animation is considered no longer active.
#[derive(Debug, Clone, Copy, Reflect)]
pub struct ActiveAnimation {
/// The factor by which the weight from the [`AnimationGraph`] is multiplied.
weight: f32,
repeat: RepeatAnimation,
speed: f32,
/// Total time the animation has been played.
///
/// Note: Time does not increase when the animation is paused or after it has completed.
elapsed: f32,
/// The timestamp inside of the animation clip.
///
/// Note: This will always be in the range [0.0, animation clip duration]
seek_time: f32,
/// The `seek_time` of the previous tick, if any.
last_seek_time: Option<f32>,
/// Number of times the animation has completed.
/// If the animation is playing in reverse, this increments when the animation passes the start.
completions: u32,
/// `true` if the animation was completed at least once this tick.
just_completed: bool,
paused: bool,
}
impl Default for ActiveAnimation {
fn default() -> Self {
Self {
weight: 1.0,
repeat: RepeatAnimation::default(),
speed: 1.0,
elapsed: 0.0,
seek_time: 0.0,
last_seek_time: None,
completions: 0,
just_completed: false,
paused: false,
}
}
}
impl ActiveAnimation {
/// Check if the animation has finished, based on its repetition behavior and the number of times it has repeated.
///
/// Note: An animation with `RepeatAnimation::Forever` will never finish.
#[inline]
pub fn is_finished(&self) -> bool {
match self.repeat {
RepeatAnimation::Forever => false,
RepeatAnimation::Never => self.completions >= 1,
RepeatAnimation::Count(n) => self.completions >= n,
}
}
/// Update the animation given the delta time and the duration of the clip being played.
#[inline]
fn update(&mut self, delta: f32, clip_duration: f32) {
self.just_completed = false;
self.last_seek_time = Some(self.seek_time);
if self.is_finished() {
return;
}
self.elapsed += delta;
self.seek_time += delta * self.speed;
let over_time = self.speed > 0.0 && self.seek_time >= clip_duration;
let under_time = self.speed < 0.0 && self.seek_time < 0.0;
if over_time || under_time {
self.just_completed = true;
self.completions += 1;
if self.is_finished() {
return;
}
}
if self.seek_time >= clip_duration {
self.seek_time %= clip_duration;
}
// Note: assumes delta is never lower than -clip_duration
if self.seek_time < 0.0 {
self.seek_time += clip_duration;
}
}
/// Reset back to the initial state as if no time has elapsed.
pub fn replay(&mut self) {
self.just_completed = false;
self.completions = 0;
self.elapsed = 0.0;
self.last_seek_time = None;
self.seek_time = 0.0;
}
/// Returns the current weight of this animation.
pub fn weight(&self) -> f32 {
self.weight
}
/// Sets the weight of this animation.
pub fn set_weight(&mut self, weight: f32) -> &mut Self {
self.weight = weight;
self
}
/// Pause the animation.
pub fn pause(&mut self) -> &mut Self {
self.paused = true;
self
}
/// Unpause the animation.
pub fn resume(&mut self) -> &mut Self {
self.paused = false;
self
}
/// Returns true if this animation is currently paused.
///
/// Note that paused animations are still [`ActiveAnimation`]s.
#[inline]
pub fn is_paused(&self) -> bool {
self.paused
}
/// Sets the repeat mode for this playing animation.
pub fn set_repeat(&mut self, repeat: RepeatAnimation) -> &mut Self {
self.repeat = repeat;
self
}
/// Marks this animation as repeating forever.
pub fn repeat(&mut self) -> &mut Self {
self.set_repeat(RepeatAnimation::Forever)
}
/// Returns the repeat mode assigned to this active animation.
pub fn repeat_mode(&self) -> RepeatAnimation {
self.repeat
}
/// Returns the number of times this animation has completed.
pub fn completions(&self) -> u32 {
self.completions
}
/// Returns true if the animation is playing in reverse.
pub fn is_playback_reversed(&self) -> bool {
self.speed < 0.0
}
/// Returns the speed of the animation playback.
pub fn speed(&self) -> f32 {
self.speed
}
/// Sets the speed of the animation playback.
pub fn set_speed(&mut self, speed: f32) -> &mut Self {
self.speed = speed;
self
}
/// Returns the amount of time the animation has been playing.
pub fn elapsed(&self) -> f32 {
self.elapsed
}
/// Returns the seek time of the animation.
///
/// This is nonnegative and no more than the clip duration.
pub fn seek_time(&self) -> f32 {
self.seek_time
}
/// Seeks to a specific time in the animation.
///
/// This will not trigger events between the current time and `seek_time`.
/// Use [`seek_to`](Self::seek_to) if this is desired.
pub fn set_seek_time(&mut self, seek_time: f32) -> &mut Self {
self.last_seek_time = Some(seek_time);
self.seek_time = seek_time;
self
}
/// Seeks to a specific time in the animation.
///
/// Note that any events between the current time and `seek_time`
/// will be triggered on the next update.
/// Use [`set_seek_time`](Self::set_seek_time) if this is undisered.
pub fn seek_to(&mut self, seek_time: f32) -> &mut Self {
self.last_seek_time = Some(self.seek_time);
self.seek_time = seek_time;
self
}
/// Seeks to the beginning of the animation.
///
/// Note that any events between the current time and `0.0`
/// will be triggered on the next update.
/// Use [`set_seek_time`](Self::set_seek_time) if this is undisered.
pub fn rewind(&mut self) -> &mut Self {
self.last_seek_time = Some(self.seek_time);
self.seek_time = 0.0;
self
}
}
/// Animation controls.
///
/// Automatically added to any root animations of a scene when it is
/// spawned.
#[derive(Component, Default, Reflect)]
#[reflect(Component, Default)]
pub struct AnimationPlayer {
active_animations: HashMap<AnimationNodeIndex, ActiveAnimation>,
blend_weights: HashMap<AnimationNodeIndex, f32>,
}
// This is needed since `#[derive(Clone)]` does not generate optimized `clone_from`.
impl Clone for AnimationPlayer {
fn clone(&self) -> Self {
Self {
active_animations: self.active_animations.clone(),
blend_weights: self.blend_weights.clone(),
}
}
fn clone_from(&mut self, source: &Self) {
self.active_animations.clone_from(&source.active_animations);
self.blend_weights.clone_from(&source.blend_weights);
}
}
/// Temporary data that the [`animate_targets`] system maintains.
#[derive(Default)]
pub struct AnimationEvaluationState {
/// Stores all [`AnimationCurveEvaluator`]s corresponding to properties that
/// we've seen so far.
///
/// This is a mapping from the id of an animation curve evaluator to
/// the animation curve evaluator itself.
/// For efficiency's sake, the [`AnimationCurveEvaluator`]s are cached from
/// frame to frame and animation target to animation target. Therefore,
/// there may be entries in this list corresponding to properties that the
/// current [`AnimationPlayer`] doesn't animate. To iterate only over the
/// properties that are currently being animated, consult the
/// [`Self::current_evaluators`] set.
evaluators: AnimationCurveEvaluators,
/// The set of [`AnimationCurveEvaluator`] types that the current
/// [`AnimationPlayer`] is animating.
///
/// This is built up as new curve evaluators are encountered during graph
/// traversal.
current_evaluators: CurrentEvaluators,
}
#[derive(Default)]
struct AnimationCurveEvaluators {
component_property_curve_evaluators:
PreHashMap<(TypeId, usize), Box<dyn AnimationCurveEvaluator>>,
type_id_curve_evaluators: TypeIdMap<Box<dyn AnimationCurveEvaluator>>,
}
impl AnimationCurveEvaluators {
#[inline]
pub(crate) fn get_mut(&mut self, id: EvaluatorId) -> Option<&mut dyn AnimationCurveEvaluator> {
match id {
EvaluatorId::ComponentField(component_property) => self
.component_property_curve_evaluators
.get_mut(component_property),
EvaluatorId::Type(type_id) => self.type_id_curve_evaluators.get_mut(&type_id),
}
.map(|e| &mut **e)
}
#[inline]
pub(crate) fn get_or_insert_with(
&mut self,
id: EvaluatorId,
func: impl FnOnce() -> Box<dyn AnimationCurveEvaluator>,
) -> &mut dyn AnimationCurveEvaluator {
match id {
EvaluatorId::ComponentField(component_property) => &mut **self
.component_property_curve_evaluators
.get_or_insert_with(component_property, func),
EvaluatorId::Type(type_id) => match self.type_id_curve_evaluators.entry(type_id) {
bevy_utils::hashbrown::hash_map::Entry::Occupied(occupied_entry) => {
&mut **occupied_entry.into_mut()
}
bevy_utils::hashbrown::hash_map::Entry::Vacant(vacant_entry) => {
&mut **vacant_entry.insert(func())
}
},
}
}
}
#[derive(Default)]
struct CurrentEvaluators {
component_properties: PreHashMap<(TypeId, usize), ()>,
type_ids: TypeIdMap<()>,
}
impl CurrentEvaluators {
pub(crate) fn keys(&self) -> impl Iterator<Item = EvaluatorId> {
self.component_properties
.keys()
.map(EvaluatorId::ComponentField)
.chain(self.type_ids.keys().copied().map(EvaluatorId::Type))
}
pub(crate) fn clear(
&mut self,
mut visit: impl FnMut(EvaluatorId) -> Result<(), AnimationEvaluationError>,
) -> Result<(), AnimationEvaluationError> {
for (key, _) in self.component_properties.drain() {
(visit)(EvaluatorId::ComponentField(&key))?;
}
for (key, _) in self.type_ids.drain() {
(visit)(EvaluatorId::Type(key))?;
}
Ok(())
}
#[inline]
pub(crate) fn insert(&mut self, id: EvaluatorId) {
match id {
EvaluatorId::ComponentField(component_property) => {
self.component_properties.insert(*component_property, ());
}
EvaluatorId::Type(type_id) => {
self.type_ids.insert(type_id, ());
}
}
}
}
impl AnimationPlayer {
/// Start playing an animation, restarting it if necessary.
pub fn start(&mut self, animation: AnimationNodeIndex) -> &mut ActiveAnimation {
let playing_animation = self.active_animations.entry(animation).or_default();
playing_animation.replay();
playing_animation
}
/// Start playing an animation, unless the requested animation is already playing.
pub fn play(&mut self, animation: AnimationNodeIndex) -> &mut ActiveAnimation {
self.active_animations.entry(animation).or_default()
}
/// Stops playing the given animation, removing it from the list of playing
/// animations.
pub fn stop(&mut self, animation: AnimationNodeIndex) -> &mut Self {
self.active_animations.remove(&animation);
self
}
/// Stops all currently-playing animations.
pub fn stop_all(&mut self) -> &mut Self {
self.active_animations.clear();
self
}
/// Iterates through all animations that this [`AnimationPlayer`] is
/// currently playing.
pub fn playing_animations(
&self,
) -> impl Iterator<Item = (&AnimationNodeIndex, &ActiveAnimation)> {
self.active_animations.iter()
}
/// Iterates through all animations that this [`AnimationPlayer`] is
/// currently playing, mutably.
pub fn playing_animations_mut(
&mut self,
) -> impl Iterator<Item = (&AnimationNodeIndex, &mut ActiveAnimation)> {
self.active_animations.iter_mut()
}
/// Returns true if the animation is currently playing or paused, or false
/// if the animation is stopped.
pub fn is_playing_animation(&self, animation: AnimationNodeIndex) -> bool {
self.active_animations.contains_key(&animation)
}
/// Check if all playing animations have finished, according to the repetition behavior.
pub fn all_finished(&self) -> bool {
self.active_animations
.values()
.all(ActiveAnimation::is_finished)
}
/// Check if all playing animations are paused.
#[doc(alias = "is_paused")]
pub fn all_paused(&self) -> bool {
self.active_animations
.values()
.all(ActiveAnimation::is_paused)
}
/// Resume all playing animations.
#[doc(alias = "pause")]
pub fn pause_all(&mut self) -> &mut Self {
for (_, playing_animation) in self.playing_animations_mut() {
playing_animation.pause();
}
self
}
/// Resume all active animations.
#[doc(alias = "resume")]
pub fn resume_all(&mut self) -> &mut Self {
for (_, playing_animation) in self.playing_animations_mut() {
playing_animation.resume();
}
self
}
/// Rewinds all active animations.
#[doc(alias = "rewind")]
pub fn rewind_all(&mut self) -> &mut Self {
for (_, playing_animation) in self.playing_animations_mut() {
playing_animation.rewind();
}
self
}
/// Multiplies the speed of all active animations by the given factor.
#[doc(alias = "set_speed")]
pub fn adjust_speeds(&mut self, factor: f32) -> &mut Self {
for (_, playing_animation) in self.playing_animations_mut() {
let new_speed = playing_animation.speed() * factor;
playing_animation.set_speed(new_speed);
}
self
}
/// Seeks all active animations forward or backward by the same amount.
///
/// To seek forward, pass a positive value; to seek negative, pass a
/// negative value. Values below 0.0 or beyond the end of the animation clip
/// are clamped appropriately.
#[doc(alias = "seek_to")]
pub fn seek_all_by(&mut self, amount: f32) -> &mut Self {
for (_, playing_animation) in self.playing_animations_mut() {
let new_time = playing_animation.seek_time();
playing_animation.seek_to(new_time + amount);
}
self
}
/// Returns the [`ActiveAnimation`] associated with the given animation
/// node if it's currently playing.
///
/// If the animation isn't currently active, returns `None`.
pub fn animation(&self, animation: AnimationNodeIndex) -> Option<&ActiveAnimation> {
self.active_animations.get(&animation)
}
/// Returns a mutable reference to the [`ActiveAnimation`] associated with
/// the given animation node if it's currently active.
///
/// If the animation isn't currently active, returns `None`.
pub fn animation_mut(&mut self, animation: AnimationNodeIndex) -> Option<&mut ActiveAnimation> {
self.active_animations.get_mut(&animation)
}
#[deprecated = "Use `is_playing_animation` instead"]
/// Returns true if the animation is currently playing or paused, or false
/// if the animation is stopped.
pub fn animation_is_playing(&self, animation: AnimationNodeIndex) -> bool {
self.active_animations.contains_key(&animation)
}
}
/// A system that triggers untargeted animation events for the currently-playing animations.
fn trigger_untargeted_animation_events(
mut commands: Commands,
clips: Res<Assets<AnimationClip>>,
graphs: Res<Assets<AnimationGraph>>,
players: Query<(Entity, &AnimationPlayer, &AnimationGraphHandle)>,
) {
for (entity, player, graph_id) in &players {
// The graph might not have loaded yet. Safely bail.
let Some(graph) = graphs.get(graph_id) else {
return;
};
for (index, active_animation) in player.active_animations.iter() {
if active_animation.paused {
continue;
}
let Some(clip) = graph
.get(*index)
.and_then(|node| match &node.node_type {
AnimationNodeType::Clip(handle) => Some(handle),
AnimationNodeType::Blend | AnimationNodeType::Add => None,
})
.and_then(|id| clips.get(id))
else {
continue;
};
let Some(triggered_events) =
TriggeredEvents::from_animation(AnimationEventTarget::Root, clip, active_animation)
else {
continue;
};
for TimedAnimationEvent { time, event } in triggered_events.iter() {
event.trigger(&mut commands, entity, *time, active_animation.weight);
}
}
}
}
/// A system that advances the time for all playing animations.
pub fn advance_animations(
time: Res<Time>,
animation_clips: Res<Assets<AnimationClip>>,
animation_graphs: Res<Assets<AnimationGraph>>,
mut players: Query<(&mut AnimationPlayer, &AnimationGraphHandle)>,
) {
let delta_seconds = time.delta_secs();
players
.par_iter_mut()
.for_each(|(mut player, graph_handle)| {
let Some(animation_graph) = animation_graphs.get(graph_handle) else {
return;
};
// Tick animations, and schedule them.
let AnimationPlayer {
ref mut active_animations,
..
} = *player;
for node_index in animation_graph.graph.node_indices() {
let node = &animation_graph[node_index];
if let Some(active_animation) = active_animations.get_mut(&node_index) {
// Tick the animation if necessary.
if !active_animation.paused {
if let AnimationNodeType::Clip(ref clip_handle) = node.node_type {
if let Some(clip) = animation_clips.get(clip_handle) {
active_animation.update(delta_seconds, clip.duration);
}
}
}
}
}
});
}
/// A type alias for [`EntityMutExcept`] as used in animation.
pub type AnimationEntityMut<'w> =
EntityMutExcept<'w, (AnimationTarget, AnimationPlayer, AnimationGraphHandle)>;
/// A system that modifies animation targets (e.g. bones in a skinned mesh)
/// according to the currently-playing animations.
pub fn animate_targets(
par_commands: ParallelCommands,
clips: Res<Assets<AnimationClip>>,
graphs: Res<Assets<AnimationGraph>>,
threaded_animation_graphs: Res<ThreadedAnimationGraphs>,
players: Query<(&AnimationPlayer, &AnimationGraphHandle)>,
mut targets: Query<(Entity, &AnimationTarget, AnimationEntityMut)>,
animation_evaluation_state: Local<ThreadLocal<RefCell<AnimationEvaluationState>>>,
) {
// Evaluate all animation targets in parallel.
targets
.par_iter_mut()
.for_each(|(entity, target, entity_mut)| {
let &AnimationTarget {
id: target_id,
player: player_id,
} = target;
let (animation_player, animation_graph_id) =
if let Ok((player, graph_handle)) = players.get(player_id) {
(player, graph_handle.id())
} else {
trace!(
"Either an animation player {:?} or a graph was missing for the target \
entity {:?} ({:?}); no animations will play this frame",
player_id,
entity_mut.id(),
entity_mut.get::<Name>(),
);
return;
};
// The graph might not have loaded yet. Safely bail.
let Some(animation_graph) = graphs.get(animation_graph_id) else {
return;
};
let Some(threaded_animation_graph) =
threaded_animation_graphs.0.get(&animation_graph_id)
else {
return;
};
// Determine which mask groups this animation target belongs to.
let target_mask = animation_graph
.mask_groups
.get(&target_id)
.cloned()
.unwrap_or_default();
let mut evaluation_state = animation_evaluation_state.get_or_default().borrow_mut();
let evaluation_state = &mut *evaluation_state;
// Evaluate the graph.
for &animation_graph_node_index in threaded_animation_graph.threaded_graph.iter() {
let Some(animation_graph_node) = animation_graph.get(animation_graph_node_index)
else {
continue;
};
match animation_graph_node.node_type {
AnimationNodeType::Blend => {
// This is a blend node.
for edge_index in threaded_animation_graph.sorted_edge_ranges
[animation_graph_node_index.index()]
.clone()
{
if let Err(err) = evaluation_state.blend_all(
threaded_animation_graph.sorted_edges[edge_index as usize],
) {
warn!("Failed to blend animation: {:?}", err);
}
}
if let Err(err) = evaluation_state.push_blend_register_all(
animation_graph_node.weight,
animation_graph_node_index,
) {
warn!("Animation blending failed: {:?}", err);
}
}
AnimationNodeType::Add => {
// This is an additive blend node.
for edge_index in threaded_animation_graph.sorted_edge_ranges
[animation_graph_node_index.index()]
.clone()
{
if let Err(err) = evaluation_state
.add_all(threaded_animation_graph.sorted_edges[edge_index as usize])
{
warn!("Failed to blend animation: {:?}", err);
}
}
if let Err(err) = evaluation_state.push_blend_register_all(
animation_graph_node.weight,
animation_graph_node_index,
) {
warn!("Animation blending failed: {:?}", err);
}
}
AnimationNodeType::Clip(ref animation_clip_handle) => {
// This is a clip node.
let Some(active_animation) = animation_player
.active_animations
.get(&animation_graph_node_index)
else {
continue;
};
// If the weight is zero or the current animation target is
// masked out, stop here.
if active_animation.weight == 0.0
|| (target_mask
& threaded_animation_graph.computed_masks
[animation_graph_node_index.index()])
!= 0
{
continue;
}
let Some(clip) = clips.get(animation_clip_handle) else {
continue;
};
if !active_animation.paused {
// Trigger all animation events that occurred this tick, if any.
if let Some(triggered_events) = TriggeredEvents::from_animation(
AnimationEventTarget::Node(target_id),
clip,
active_animation,
) {
if !triggered_events.is_empty() {
par_commands.command_scope(move |mut commands| {
for TimedAnimationEvent { time, event } in
triggered_events.iter()
{
event.trigger(
&mut commands,
entity,
*time,
active_animation.weight,
);
}
});
}
}
}
let Some(curves) = clip.curves_for_target(target_id) else {
continue;
};
let weight = active_animation.weight * animation_graph_node.weight;
let seek_time = active_animation.seek_time;
for curve in curves {
// Fetch the curve evaluator. Curve evaluator types
// are unique to each property, but shared among all
// curve types. For example, given two curve types A
// and B, `RotationCurve<A>` and `RotationCurve<B>`
// will both yield a `RotationCurveEvaluator` and
// therefore will share the same evaluator in this
// table.
let curve_evaluator_id = (*curve.0).evaluator_id();
let curve_evaluator = evaluation_state
.evaluators
.get_or_insert_with(curve_evaluator_id.clone(), || {
curve.0.create_evaluator()
});
evaluation_state
.current_evaluators
.insert(curve_evaluator_id);
if let Err(err) = AnimationCurve::apply(
&*curve.0,
curve_evaluator,
seek_time,
weight,
animation_graph_node_index,
) {
warn!("Animation application failed: {:?}", err);
}
}
}
}
}
if let Err(err) = evaluation_state.commit_all(entity_mut) {
warn!("Animation application failed: {:?}", err);
}
});
}
/// Adds animation support to an app
#[derive(Default)]
pub struct AnimationPlugin;
impl Plugin for AnimationPlugin {
fn build(&self, app: &mut App) {
app.init_asset::<AnimationClip>()
.init_asset::<AnimationGraph>()
.init_asset_loader::<AnimationGraphAssetLoader>()
.register_asset_reflect::<AnimationClip>()
.register_asset_reflect::<AnimationGraph>()
.register_type::<AnimationPlayer>()
.register_type::<AnimationTarget>()
.register_type::<AnimationTransitions>()
.register_type::<AnimationGraphHandle>()
.register_type::<NodeIndex>()
.register_type::<ThreadedAnimationGraphs>()
.init_resource::<ThreadedAnimationGraphs>()
.add_systems(
PostUpdate,
(
graph::thread_animation_graphs,
advance_transitions,
advance_animations,
// TODO: `animate_targets` can animate anything, so
// ambiguity testing currently considers it ambiguous with
// every other system in `PostUpdate`. We may want to move
// it to its own system set after `Update` but before
// `PostUpdate`. For now, we just disable ambiguity testing
// for this system.
animate_targets
.after(bevy_render::mesh::inherit_weights)
.ambiguous_with_all(),
trigger_untargeted_animation_events,
expire_completed_transitions,
)
.chain()
.in_set(Animation)
.before(TransformSystem::TransformPropagate),
);
}
}
impl AnimationTargetId {
/// Creates a new [`AnimationTargetId`] by hashing a list of names.
///
/// Typically, this will be the path from the animation root to the
/// animation target (e.g. bone) that is to be animated.
pub fn from_names<'a>(names: impl Iterator<Item = &'a Name>) -> Self {
let mut blake3 = blake3::Hasher::new();
blake3.update(ANIMATION_TARGET_NAMESPACE.as_bytes());
for name in names {
blake3.update(name.as_bytes());
}
let hash = blake3.finalize().as_bytes()[0..16].try_into().unwrap();
Self(*uuid::Builder::from_sha1_bytes(hash).as_uuid())
}
/// Creates a new [`AnimationTargetId`] by hashing a single name.
pub fn from_name(name: &Name) -> Self {
Self::from_names(iter::once(name))
}
}
impl<T: AsRef<str>> FromIterator<T> for AnimationTargetId {
/// Creates a new [`AnimationTargetId`] by hashing a list of strings.
///
/// Typically, this will be the path from the animation root to the
/// animation target (e.g. bone) that is to be animated.
fn from_iter<I: IntoIterator<Item = T>>(iter: I) -> Self {
let mut blake3 = blake3::Hasher::new();
blake3.update(ANIMATION_TARGET_NAMESPACE.as_bytes());
for str in iter {
blake3.update(str.as_ref().as_bytes());
}
let hash = blake3.finalize().as_bytes()[0..16].try_into().unwrap();
Self(*uuid::Builder::from_sha1_bytes(hash).as_uuid())
}
}
impl From<&Name> for AnimationTargetId {
fn from(name: &Name) -> Self {
AnimationTargetId::from_name(name)
}
}
impl AnimationEvaluationState {
/// Calls [`AnimationCurveEvaluator::blend`] on all curve evaluator types
/// that we've been building up for a single target.
///
/// The given `node_index` is the node that we're evaluating.
fn blend_all(
&mut self,
node_index: AnimationNodeIndex,
) -> Result<(), AnimationEvaluationError> {
for curve_evaluator_type in self.current_evaluators.keys() {
self.evaluators
.get_mut(curve_evaluator_type)
.unwrap()
.blend(node_index)?;
}
Ok(())
}
/// Calls [`AnimationCurveEvaluator::add`] on all curve evaluator types
/// that we've been building up for a single target.
///
/// The given `node_index` is the node that we're evaluating.
fn add_all(&mut self, node_index: AnimationNodeIndex) -> Result<(), AnimationEvaluationError> {
for curve_evaluator_type in self.current_evaluators.keys() {
self.evaluators
.get_mut(curve_evaluator_type)
.unwrap()
.add(node_index)?;
}
Ok(())
}
/// Calls [`AnimationCurveEvaluator::push_blend_register`] on all curve
/// evaluator types that we've been building up for a single target.
///
/// The `weight` parameter is the weight that should be pushed onto the
/// stack, while the `node_index` parameter is the node that we're
/// evaluating.
fn push_blend_register_all(
&mut self,
weight: f32,
node_index: AnimationNodeIndex,
) -> Result<(), AnimationEvaluationError> {
for curve_evaluator_type in self.current_evaluators.keys() {
self.evaluators
.get_mut(curve_evaluator_type)
.unwrap()
.push_blend_register(weight, node_index)?;
}
Ok(())
}
/// Calls [`AnimationCurveEvaluator::commit`] on all curve evaluator types
/// that we've been building up for a single target.
///
/// This is the call that actually writes the computed values into the
/// components being animated.
fn commit_all(
&mut self,
mut entity_mut: AnimationEntityMut,
) -> Result<(), AnimationEvaluationError> {
self.current_evaluators.clear(|id| {
self.evaluators
.get_mut(id)
.unwrap()
.commit(entity_mut.reborrow())
})
}
}
/// All the events from an [`AnimationClip`] that occurred this tick.
#[derive(Debug, Clone)]
struct TriggeredEvents<'a> {
direction: TriggeredEventsDir,
lower: &'a [TimedAnimationEvent],
upper: &'a [TimedAnimationEvent],
}
impl<'a> TriggeredEvents<'a> {
fn from_animation(
target: AnimationEventTarget,
clip: &'a AnimationClip,
active_animation: &ActiveAnimation,
) -> Option<Self> {
let events = clip.events.get(&target)?;
let reverse = active_animation.is_playback_reversed();
let is_finished = active_animation.is_finished();
// Return early if the animation have finished on a previous tick.
if is_finished && !active_animation.just_completed {
return None;
}
// The animation completed this tick, while still playing.
let looping = active_animation.just_completed && !is_finished;
let direction = match (reverse, looping) {
(false, false) => TriggeredEventsDir::Forward,
(false, true) => TriggeredEventsDir::ForwardLooping,
(true, false) => TriggeredEventsDir::Reverse,
(true, true) => TriggeredEventsDir::ReverseLooping,
};
let last_time = active_animation.last_seek_time?;
let this_time = active_animation.seek_time;
let (lower, upper) = match direction {
// Return all events where last_time <= event.time < this_time.
TriggeredEventsDir::Forward => {
let start = events.partition_point(|event| event.time < last_time);
// The animation finished this tick, return any remaining events.
if is_finished {
(&events[start..], &events[0..0])
} else {
let end = events.partition_point(|event| event.time < this_time);
(&events[start..end], &events[0..0])
}
}
// Return all events where this_time < event.time <= last_time.
TriggeredEventsDir::Reverse => {
let end = events.partition_point(|event| event.time <= last_time);
// The animation finished, return any remaining events.
if is_finished {
(&events[..end], &events[0..0])
} else {
let start = events.partition_point(|event| event.time <= this_time);
(&events[start..end], &events[0..0])
}
}
// The animation is looping this tick and we have to return events where
// either last_tick <= event.time or event.time < this_tick.
TriggeredEventsDir::ForwardLooping => {
let upper_start = events.partition_point(|event| event.time < last_time);
let lower_end = events.partition_point(|event| event.time < this_time);
let upper = &events[upper_start..];
let lower = &events[..lower_end];
(lower, upper)
}
// The animation is looping this tick and we have to return events where
// either last_tick >= event.time or event.time > this_tick.
TriggeredEventsDir::ReverseLooping => {
let lower_end = events.partition_point(|event| event.time <= last_time);
let upper_start = events.partition_point(|event| event.time <= this_time);
let upper = &events[upper_start..];
let lower = &events[..lower_end];
(lower, upper)
}
};
Some(Self {
direction,
lower,
upper,
})
}
fn is_empty(&self) -> bool {
self.lower.is_empty() && self.upper.is_empty()
}
fn iter(&self) -> TriggeredEventsIter {
match self.direction {
TriggeredEventsDir::Forward => TriggeredEventsIter::Forward(self.lower.iter()),
TriggeredEventsDir::Reverse => TriggeredEventsIter::Reverse(self.lower.iter().rev()),
TriggeredEventsDir::ForwardLooping => TriggeredEventsIter::ForwardLooping {
upper: self.upper.iter(),
lower: self.lower.iter(),
},
TriggeredEventsDir::ReverseLooping => TriggeredEventsIter::ReverseLooping {
lower: self.lower.iter().rev(),
upper: self.upper.iter().rev(),
},
}
}
}
#[derive(Debug, Clone, Copy)]
enum TriggeredEventsDir {
/// The animation is playing normally
Forward,
/// The animation is playing in reverse
Reverse,
/// The animation is looping this tick
ForwardLooping,
/// The animation playing in reverse and looping this tick
ReverseLooping,
}
#[derive(Debug, Clone)]
enum TriggeredEventsIter<'a> {
Forward(slice::Iter<'a, TimedAnimationEvent>),
Reverse(iter::Rev<slice::Iter<'a, TimedAnimationEvent>>),
ForwardLooping {
upper: slice::Iter<'a, TimedAnimationEvent>,
lower: slice::Iter<'a, TimedAnimationEvent>,
},
ReverseLooping {
lower: iter::Rev<slice::Iter<'a, TimedAnimationEvent>>,
upper: iter::Rev<slice::Iter<'a, TimedAnimationEvent>>,
},
}
impl<'a> Iterator for TriggeredEventsIter<'a> {
type Item = &'a TimedAnimationEvent;
fn next(&mut self) -> Option<Self::Item> {
match self {
TriggeredEventsIter::Forward(iter) => iter.next(),
TriggeredEventsIter::Reverse(rev) => rev.next(),
TriggeredEventsIter::ForwardLooping { upper, lower } => {
upper.next().or_else(|| lower.next())
}
TriggeredEventsIter::ReverseLooping { lower, upper } => {
lower.next().or_else(|| upper.next())
}
}
}
}
#[cfg(test)]
mod tests {
use super::*;
#[derive(Event, Reflect, Clone)]
struct A;
#[track_caller]
fn assert_triggered_events_with(
active_animation: &ActiveAnimation,
clip: &AnimationClip,
expected: impl Into<Vec<f32>>,
) {
let Some(events) =
TriggeredEvents::from_animation(AnimationEventTarget::Root, clip, active_animation)
else {
assert_eq!(expected.into(), Vec::<f32>::new());
return;
};
let got: Vec<_> = events.iter().map(|t| t.time).collect();
assert_eq!(
expected.into(),
got,
"\n{events:#?}\nlast_time: {:?}\nthis_time:{}",
active_animation.last_seek_time,
active_animation.seek_time
);
}
#[test]
fn test_multiple_events_triggers() {
let mut active_animation = ActiveAnimation {
repeat: RepeatAnimation::Forever,
..Default::default()
};
let mut clip = AnimationClip {
duration: 1.0,
..Default::default()
};
clip.add_event(0.5, A);
clip.add_event(0.5, A);
clip.add_event(0.5, A);
assert_triggered_events_with(&active_animation, &clip, []);
active_animation.update(0.8, clip.duration); // 0.0 : 0.8
assert_triggered_events_with(&active_animation, &clip, [0.5, 0.5, 0.5]);
clip.add_event(1.0, A);
clip.add_event(0.0, A);
clip.add_event(1.0, A);
clip.add_event(0.0, A);
active_animation.update(0.4, clip.duration); // 0.8 : 0.2
assert_triggered_events_with(&active_animation, &clip, [1.0, 1.0, 0.0, 0.0]);
}
#[test]
fn test_events_triggers() {
let mut active_animation = ActiveAnimation::default();
let mut clip = AnimationClip::default();
clip.add_event(0.2, A);
clip.add_event(0.0, A);
assert_eq!(0.2, clip.duration);
assert_triggered_events_with(&active_animation, &clip, []);
active_animation.update(0.1, clip.duration); // 0.0 : 0.1
assert_triggered_events_with(&active_animation, &clip, [0.0]);
active_animation.update(0.1, clip.duration); // 0.1 : 0.2
assert_triggered_events_with(&active_animation, &clip, [0.2]);
active_animation.update(0.1, clip.duration); // 0.2 : 0.2
assert_triggered_events_with(&active_animation, &clip, []);
active_animation.update(0.1, clip.duration); // 0.2 : 0.2
assert_triggered_events_with(&active_animation, &clip, []);
active_animation.speed = -1.0;
active_animation.completions = 0;
assert_triggered_events_with(&active_animation, &clip, []);
active_animation.update(0.1, clip.duration); // 0.2 : 0.1
assert_triggered_events_with(&active_animation, &clip, [0.2]);
active_animation.update(0.1, clip.duration); // 0.1 : 0.0
assert_triggered_events_with(&active_animation, &clip, []);
active_animation.update(0.1, clip.duration); // 0.0 : 0.0
assert_triggered_events_with(&active_animation, &clip, [0.0]);
active_animation.update(0.1, clip.duration); // 0.0 : 0.0
assert_triggered_events_with(&active_animation, &clip, []);
}
#[test]
fn test_events_triggers_looping() {
let mut active_animation = ActiveAnimation {
repeat: RepeatAnimation::Forever,
..Default::default()
};
let mut clip = AnimationClip::default();
clip.add_event(0.3, A);
clip.add_event(0.0, A);
clip.add_event(0.2, A);
assert_eq!(0.3, clip.duration);
assert_triggered_events_with(&active_animation, &clip, []);
active_animation.update(0.1, clip.duration); // 0.0 : 0.1
assert_triggered_events_with(&active_animation, &clip, [0.0]);
active_animation.update(0.1, clip.duration); // 0.1 : 0.2
assert_triggered_events_with(&active_animation, &clip, []);
active_animation.update(0.1, clip.duration); // 0.2 : 0.3
assert_triggered_events_with(&active_animation, &clip, [0.2, 0.3]);
active_animation.update(0.1, clip.duration); // 0.3 : 0.1
assert_triggered_events_with(&active_animation, &clip, [0.0]);
active_animation.update(0.1, clip.duration); // 0.1 : 0.2
assert_triggered_events_with(&active_animation, &clip, []);
active_animation.speed = -1.0;
active_animation.update(0.1, clip.duration); // 0.2 : 0.1
assert_triggered_events_with(&active_animation, &clip, [0.2]);
active_animation.update(0.1, clip.duration); // 0.1 : 0.0
assert_triggered_events_with(&active_animation, &clip, []);
active_animation.update(0.1, clip.duration); // 0.0 : 0.2
assert_triggered_events_with(&active_animation, &clip, [0.0, 0.3]);
active_animation.update(0.1, clip.duration); // 0.2 : 0.1
assert_triggered_events_with(&active_animation, &clip, [0.2]);
active_animation.update(0.1, clip.duration); // 0.1 : 0.0
assert_triggered_events_with(&active_animation, &clip, []);
active_animation.replay();
active_animation.update(clip.duration, clip.duration); // 0.0 : 0.0
assert_triggered_events_with(&active_animation, &clip, [0.0, 0.3, 0.2]);
active_animation.replay();
active_animation.seek_time = clip.duration;
active_animation.last_seek_time = Some(clip.duration);
active_animation.update(clip.duration, clip.duration); // 0.3 : 0.0
assert_triggered_events_with(&active_animation, &clip, [0.3, 0.2]);
}
}