bevy/examples/3d/lighting.rs
UkoeHB c2c19e5ae4
Text rework (#15591)
**Ready for review. Examples migration progress: 100%.**

# Objective

- Implement https://github.com/bevyengine/bevy/discussions/15014

## Solution

This implements [cart's
proposal](https://github.com/bevyengine/bevy/discussions/15014#discussioncomment-10574459)
faithfully except for one change. I separated `TextSpan` from
`TextSpan2d` because `TextSpan` needs to require the `GhostNode`
component, which is a `bevy_ui` component only usable by UI.

Extra changes:
- Added `EntityCommands::commands_mut` that returns a mutable reference.
This is a blocker for extension methods that return something other than
`self`. Note that `sickle_ui`'s `UiBuilder::commands` returns a mutable
reference for this reason.

## Testing

- [x] Text examples all work.

---

## Showcase

TODO: showcase-worthy

## Migration Guide

TODO: very breaking

### Accessing text spans by index

Text sections are now text sections on different entities in a
hierarchy, Use the new `TextReader` and `TextWriter` system parameters
to access spans by index.

Before:
```rust
fn refresh_text(mut query: Query<&mut Text, With<TimeText>>, time: Res<Time>) {
    let text = query.single_mut();
    text.sections[1].value = format_time(time.elapsed());
}
```

After:
```rust
fn refresh_text(
    query: Query<Entity, With<TimeText>>,
    mut writer: UiTextWriter,
    time: Res<Time>
) {
    let entity = query.single();
    *writer.text(entity, 1) = format_time(time.elapsed());
}
```

### Iterating text spans

Text spans are now entities in a hierarchy, so the new `UiTextReader`
and `UiTextWriter` system parameters provide ways to iterate that
hierarchy. The `UiTextReader::iter` method will give you a normal
iterator over spans, and `UiTextWriter::for_each` lets you visit each of
the spans.

---------

Co-authored-by: ickshonpe <david.curthoys@googlemail.com>
Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2024-10-09 18:35:36 +00:00

322 lines
9.9 KiB
Rust

//! Illustrates different lights of various types and colors, some static, some moving over
//! a simple scene.
use std::f32::consts::PI;
use bevy::{
color::palettes::css::*,
pbr::CascadeShadowConfigBuilder,
prelude::*,
render::camera::{Exposure, PhysicalCameraParameters},
};
fn main() {
App::new()
.add_plugins(DefaultPlugins)
.insert_resource(Parameters(PhysicalCameraParameters {
aperture_f_stops: 1.0,
shutter_speed_s: 1.0 / 125.0,
sensitivity_iso: 100.0,
sensor_height: 0.01866,
}))
.add_systems(Startup, setup)
.add_systems(Update, (update_exposure, movement, animate_light_direction))
.run();
}
#[derive(Resource, Default, Deref, DerefMut)]
struct Parameters(PhysicalCameraParameters);
#[derive(Component)]
struct Movable;
/// set up a simple 3D scene
fn setup(
parameters: Res<Parameters>,
mut commands: Commands,
mut meshes: ResMut<Assets<Mesh>>,
mut materials: ResMut<Assets<StandardMaterial>>,
asset_server: Res<AssetServer>,
) {
// ground plane
commands.spawn((
Mesh3d(meshes.add(Plane3d::default().mesh().size(10.0, 10.0))),
MeshMaterial3d(materials.add(StandardMaterial {
base_color: Color::WHITE,
perceptual_roughness: 1.0,
..default()
})),
));
// left wall
let mut transform = Transform::from_xyz(2.5, 2.5, 0.0);
transform.rotate_z(PI / 2.);
commands.spawn((
Mesh3d(meshes.add(Cuboid::new(5.0, 0.15, 5.0))),
MeshMaterial3d(materials.add(StandardMaterial {
base_color: INDIGO.into(),
perceptual_roughness: 1.0,
..default()
})),
transform,
));
// back (right) wall
let mut transform = Transform::from_xyz(0.0, 2.5, -2.5);
transform.rotate_x(PI / 2.);
commands.spawn((
Mesh3d(meshes.add(Cuboid::new(5.0, 0.15, 5.0))),
MeshMaterial3d(materials.add(StandardMaterial {
base_color: INDIGO.into(),
perceptual_roughness: 1.0,
..default()
})),
transform,
));
// Bevy logo to demonstrate alpha mask shadows
let mut transform = Transform::from_xyz(-2.2, 0.5, 1.0);
transform.rotate_y(PI / 8.);
commands.spawn((
Mesh3d(meshes.add(Rectangle::new(2.0, 0.5))),
MeshMaterial3d(materials.add(StandardMaterial {
base_color_texture: Some(asset_server.load("branding/bevy_logo_light.png")),
perceptual_roughness: 1.0,
alpha_mode: AlphaMode::Mask(0.5),
cull_mode: None,
..default()
})),
transform,
Movable,
));
// cube
commands.spawn((
Mesh3d(meshes.add(Cuboid::default())),
MeshMaterial3d(materials.add(StandardMaterial {
base_color: DEEP_PINK.into(),
..default()
})),
Transform::from_xyz(0.0, 0.5, 0.0),
Movable,
));
// sphere
commands.spawn((
Mesh3d(meshes.add(Sphere::new(0.5).mesh().uv(32, 18))),
MeshMaterial3d(materials.add(StandardMaterial {
base_color: LIMEGREEN.into(),
..default()
})),
Transform::from_xyz(1.5, 1.0, 1.5),
Movable,
));
// ambient light
commands.insert_resource(AmbientLight {
color: ORANGE_RED.into(),
brightness: 0.02,
});
// red point light
commands
.spawn((
PointLight {
intensity: 100_000.0,
color: RED.into(),
shadows_enabled: true,
..default()
},
Transform::from_xyz(1.0, 2.0, 0.0),
))
.with_children(|builder| {
builder.spawn((
Mesh3d(meshes.add(Sphere::new(0.1).mesh().uv(32, 18))),
MeshMaterial3d(materials.add(StandardMaterial {
base_color: RED.into(),
emissive: LinearRgba::new(4.0, 0.0, 0.0, 0.0),
..default()
})),
));
});
// green spot light
commands
.spawn((
SpotLight {
intensity: 100_000.0,
color: LIME.into(),
shadows_enabled: true,
inner_angle: 0.6,
outer_angle: 0.8,
..default()
},
Transform::from_xyz(-1.0, 2.0, 0.0).looking_at(Vec3::new(-1.0, 0.0, 0.0), Vec3::Z),
))
.with_child((
Mesh3d(meshes.add(Capsule3d::new(0.1, 0.125))),
MeshMaterial3d(materials.add(StandardMaterial {
base_color: LIME.into(),
emissive: LinearRgba::new(0.0, 4.0, 0.0, 0.0),
..default()
})),
Transform::from_rotation(Quat::from_rotation_x(PI / 2.0)),
));
// blue point light
commands
.spawn((
PointLight {
intensity: 100_000.0,
color: BLUE.into(),
shadows_enabled: true,
..default()
},
Transform::from_xyz(0.0, 4.0, 0.0),
))
.with_children(|builder| {
builder.spawn((
Mesh3d(meshes.add(Sphere::new(0.1).mesh().uv(32, 18))),
MeshMaterial3d(materials.add(StandardMaterial {
base_color: BLUE.into(),
emissive: LinearRgba::new(0.0, 0.0, 713.0, 0.0),
..default()
})),
));
});
// directional 'sun' light
commands.spawn((
DirectionalLight {
illuminance: light_consts::lux::OVERCAST_DAY,
shadows_enabled: true,
..default()
},
Transform {
translation: Vec3::new(0.0, 2.0, 0.0),
rotation: Quat::from_rotation_x(-PI / 4.),
..default()
},
// The default cascade config is designed to handle large scenes.
// As this example has a much smaller world, we can tighten the shadow
// bounds for better visual quality.
CascadeShadowConfigBuilder {
first_cascade_far_bound: 4.0,
maximum_distance: 10.0,
..default()
}
.build(),
));
// example instructions
commands
.spawn((
Text::default(),
Style {
position_type: PositionType::Absolute,
top: Val::Px(12.0),
left: Val::Px(12.0),
..default()
},
))
.with_children(|p| {
p.spawn(TextSpan(format!(
"Aperture: f/{:.0}\n",
parameters.aperture_f_stops,
)));
p.spawn(TextSpan(format!(
"Shutter speed: 1/{:.0}s\n",
1.0 / parameters.shutter_speed_s
)));
p.spawn(TextSpan(format!(
"Sensitivity: ISO {:.0}\n",
parameters.sensitivity_iso
)));
p.spawn(TextSpan::new("\n\n"));
p.spawn(TextSpan::new("Controls\n"));
p.spawn(TextSpan::new("---------------\n"));
p.spawn(TextSpan::new("Arrow keys - Move objects\n"));
p.spawn(TextSpan::new("1/2 - Decrease/Increase aperture\n"));
p.spawn(TextSpan::new("Arrow keys - Move objects\n"));
p.spawn(TextSpan::new("3/4 - Decrease/Increase shutter speed\n"));
p.spawn(TextSpan::new("5/6 - Decrease/Increase sensitivity\n"));
p.spawn(TextSpan::new("R - Reset exposure"));
});
// camera
commands.spawn((
Camera3d::default(),
Transform::from_xyz(-2.0, 2.5, 5.0).looking_at(Vec3::ZERO, Vec3::Y),
Exposure::from_physical_camera(**parameters),
));
}
fn update_exposure(
key_input: Res<ButtonInput<KeyCode>>,
mut parameters: ResMut<Parameters>,
mut exposure: Query<&mut Exposure>,
text: Query<Entity, With<Text>>,
mut writer: UiTextWriter,
) {
// TODO: Clamp values to a reasonable range
let entity = text.single();
if key_input.just_pressed(KeyCode::Digit2) {
parameters.aperture_f_stops *= 2.0;
} else if key_input.just_pressed(KeyCode::Digit1) {
parameters.aperture_f_stops *= 0.5;
}
if key_input.just_pressed(KeyCode::Digit4) {
parameters.shutter_speed_s *= 2.0;
} else if key_input.just_pressed(KeyCode::Digit3) {
parameters.shutter_speed_s *= 0.5;
}
if key_input.just_pressed(KeyCode::Digit6) {
parameters.sensitivity_iso += 100.0;
} else if key_input.just_pressed(KeyCode::Digit5) {
parameters.sensitivity_iso -= 100.0;
}
if key_input.just_pressed(KeyCode::KeyR) {
*parameters = Parameters::default();
}
*writer.text(entity, 1) = format!("Aperture: f/{:.0}\n", parameters.aperture_f_stops);
*writer.text(entity, 2) = format!(
"Shutter speed: 1/{:.0}s\n",
1.0 / parameters.shutter_speed_s
);
*writer.text(entity, 3) = format!("Sensitivity: ISO {:.0}\n", parameters.sensitivity_iso);
*exposure.single_mut() = Exposure::from_physical_camera(**parameters);
}
fn animate_light_direction(
time: Res<Time>,
mut query: Query<&mut Transform, With<DirectionalLight>>,
) {
for mut transform in &mut query {
transform.rotate_y(time.delta_seconds() * 0.5);
}
}
fn movement(
input: Res<ButtonInput<KeyCode>>,
time: Res<Time>,
mut query: Query<&mut Transform, With<Movable>>,
) {
for mut transform in &mut query {
let mut direction = Vec3::ZERO;
if input.pressed(KeyCode::ArrowUp) {
direction.y += 1.0;
}
if input.pressed(KeyCode::ArrowDown) {
direction.y -= 1.0;
}
if input.pressed(KeyCode::ArrowLeft) {
direction.x -= 1.0;
}
if input.pressed(KeyCode::ArrowRight) {
direction.x += 1.0;
}
transform.translation += time.delta_seconds() * 2.0 * direction;
}
}