bevy/crates/bevy_ecs
Serv 3b1b60e7dc
add MutUntyped::map_unchanged (#9194)
### **Adopted #6430**

# Objective

`MutUntyped` is the untyped variant of `Mut<T>` that stores a `PtrMut`
instead of a `&mut T`. Working with a `MutUntyped` is a bit annoying,
because as soon you want to use the ptr e.g. as a `&mut dyn Reflect` you
cannot use a type like `Mut<dyn Reflect>` but instead need to carry
around a `&mut dyn Reflect` and a `impl FnMut()` to mark the value as
changed.
## Solution

* Provide a method `map_unchanged` to turn a `MutUntyped` into a
`Mut<T>` by mapping the `PtrMut<'a>` to a `&'a mut T`
      This can be used like this:


```rust
// SAFETY: ptr is of type `u8`
let val: Mut<u8> = mut_untyped.map_unchanged(|ptr| unsafe { ptr.deref_mut::<u8>() });

// SAFETY: from the context it is known that `ReflectFromPtr` was made for the type of the `MutUntyped`
let val: Mut<dyn Reflect> = mut_untyped.map_unchanged(|ptr| unsafe { reflect_from_ptr.as_reflect_ptr_mut(ptr) });
```

Note that nothing prevents you from doing

```rust
mut_untyped.map_unchanged(|ptr| &mut ());
```

or using any other mutable reference you can get, but IMO that is fine
since that will only result in a `Mut` that will dereference to that
value and mark the original value as changed. The lifetimes here prevent
anything bad from happening.
## Alternatives

1. Make `Ticks` public and provide a method to get construct a `Mut`
from `Ticks` and `&mut T`. More powerful and more easy to misuse.
2. Do nothing. People can still do everything they want, but they need
to pass (`&mut dyn Reflect, impl FnMut() + '_)` around instead of
`Mut<dyn Reflect>`

## Changelog

- add `MutUntyped::map_unchanged` to turn a `MutUntyped` into its typed
counterpart

---------

Co-authored-by: Jakob Hellermann <jakob.hellermann@protonmail.com>
Co-authored-by: JoJoJet <21144246+JoJoJet@users.noreply.github.com>
2023-07-23 01:17:31 +00:00
..
examples Require #[derive(Event)] on all Events (#7086) 2023-06-06 14:44:32 +00:00
macros Bump Version after Release (#9106) 2023-07-10 21:19:27 +00:00
src add MutUntyped::map_unchanged (#9194) 2023-07-23 01:17:31 +00:00
Cargo.toml Bump Version after Release (#9106) 2023-07-10 21:19:27 +00:00
README.md Require #[derive(Event)] on all Events (#7086) 2023-06-06 14:44:32 +00:00

Bevy ECS

Crates.io license Discord

What is Bevy ECS?

Bevy ECS is an Entity Component System custom-built for the Bevy game engine. It aims to be simple to use, ergonomic, fast, massively parallel, opinionated, and featureful. It was created specifically for Bevy's needs, but it can easily be used as a standalone crate in other projects.

ECS

All app logic in Bevy uses the Entity Component System paradigm, which is often shortened to ECS. ECS is a software pattern that involves breaking your program up into Entities, Components, and Systems. Entities are unique "things" that are assigned groups of Components, which are then processed using Systems.

For example, one entity might have a Position and Velocity component, whereas another entity might have a Position and UI component. You might have a movement system that runs on all entities with a Position and Velocity component.

The ECS pattern encourages clean, decoupled designs by forcing you to break up your app data and logic into its core components. It also helps make your code faster by optimizing memory access patterns and making parallelism easier.

Concepts

Bevy ECS is Bevy's implementation of the ECS pattern. Unlike other Rust ECS implementations, which often require complex lifetimes, traits, builder patterns, or macros, Bevy ECS uses normal Rust data types for all of these concepts:

Components

Components are normal Rust structs. They are data stored in a World and specific instances of Components correlate to Entities.

use bevy_ecs::prelude::*;

#[derive(Component)]
struct Position { x: f32, y: f32 }

Worlds

Entities, Components, and Resources are stored in a World. Worlds, much like Rust std collections like HashSet and Vec, expose operations to insert, read, write, and remove the data they store.

use bevy_ecs::world::World;

let world = World::default();

Entities

Entities are unique identifiers that correlate to zero or more Components.

use bevy_ecs::prelude::*;

#[derive(Component)]
struct Position { x: f32, y: f32 }
#[derive(Component)]
struct Velocity { x: f32, y: f32 }

let mut world = World::new();

let entity = world
    .spawn((Position { x: 0.0, y: 0.0 }, Velocity { x: 1.0, y: 0.0 }))
    .id();

let entity_ref = world.entity(entity);
let position = entity_ref.get::<Position>().unwrap();
let velocity = entity_ref.get::<Velocity>().unwrap();

Systems

Systems are normal Rust functions. Thanks to the Rust type system, Bevy ECS can use function parameter types to determine what data needs to be sent to the system. It also uses this "data access" information to determine what Systems can run in parallel with each other.

use bevy_ecs::prelude::*;

#[derive(Component)]
struct Position { x: f32, y: f32 }

fn print_position(query: Query<(Entity, &Position)>) {
    for (entity, position) in &query {
        println!("Entity {:?} is at position: x {}, y {}", entity, position.x, position.y);
    }
}

Resources

Apps often require unique resources, such as asset collections, renderers, audio servers, time, etc. Bevy ECS makes this pattern a first class citizen. Resource is a special kind of component that does not belong to any entity. Instead, it is identified uniquely by its type:

use bevy_ecs::prelude::*;

#[derive(Resource, Default)]
struct Time {
    seconds: f32,
}

let mut world = World::new();

world.insert_resource(Time::default());

let time = world.get_resource::<Time>().unwrap();

// You can also access resources from Systems
fn print_time(time: Res<Time>) {
    println!("{}", time.seconds);
}

The resources.rs example illustrates how to read and write a Counter resource from Systems.

Schedules

Schedules run a set of Systems according to some execution strategy. Systems can be added to any number of System Sets, which are used to control their scheduling metadata.

The built in "parallel executor" considers dependencies between systems and (by default) run as many of them in parallel as possible. This maximizes performance, while keeping the system execution safe. To control the system ordering, define explicit dependencies between systems and their sets.

Using Bevy ECS

Bevy ECS should feel very natural for those familiar with Rust syntax:

use bevy_ecs::prelude::*;

#[derive(Component)]
struct Position { x: f32, y: f32 }
#[derive(Component)]
struct Velocity { x: f32, y: f32 }

// This system moves each entity with a Position and Velocity component
fn movement(mut query: Query<(&mut Position, &Velocity)>) {
    for (mut position, velocity) in &mut query {
        position.x += velocity.x;
        position.y += velocity.y;
    }
}

fn main() {
    // Create a new empty World to hold our Entities and Components
    let mut world = World::new();

    // Spawn an entity with Position and Velocity components
    world.spawn((
        Position { x: 0.0, y: 0.0 },
        Velocity { x: 1.0, y: 0.0 },
    ));

    // Create a new Schedule, which defines an execution strategy for Systems
    let mut schedule = Schedule::default();

    // Add our system to the schedule
    schedule.add_systems(movement);

    // Run the schedule once. If your app has a "loop", you would run this once per loop
    schedule.run(&mut world);
}

Features

Query Filters

use bevy_ecs::prelude::*;

#[derive(Component)]
struct Position { x: f32, y: f32 }
#[derive(Component)]
struct Player;
#[derive(Component)]
struct Alive;

// Gets the Position component of all Entities with Player component and without the Alive
// component. 
fn system(query: Query<&Position, (With<Player>, Without<Alive>)>) {
    for position in &query {
    }
}

Change Detection

Bevy ECS tracks all changes to Components and Resources.

Queries can filter for changed Components:

use bevy_ecs::prelude::*;

#[derive(Component)]
struct Position { x: f32, y: f32 }
#[derive(Component)]
struct Velocity { x: f32, y: f32 }

// Gets the Position component of all Entities whose Velocity has changed since the last run of the System
fn system_changed(query: Query<&Position, Changed<Velocity>>) {
    for position in &query {
    }
}

// Gets the Position component of all Entities that had a Velocity component added since the last run of the System
fn system_added(query: Query<&Position, Added<Velocity>>) {
    for position in &query {
    }
}

Resources also expose change state:

use bevy_ecs::prelude::*;

#[derive(Resource)]
struct Time(f32);

// Prints "time changed!" if the Time resource has changed since the last run of the System
fn system(time: Res<Time>) {
    if time.is_changed() {
        println!("time changed!");
    }
}

The change_detection.rs example shows how to query only for updated entities and react on changes in resources.

Component Storage

Bevy ECS supports multiple component storage types.

Components can be stored in:

  • Tables: Fast and cache friendly iteration, but slower adding and removing of components. This is the default storage type.
  • Sparse Sets: Fast adding and removing of components, but slower iteration.

Component storage types are configurable, and they default to table storage if the storage is not manually defined.

use bevy_ecs::prelude::*;

#[derive(Component)]
struct TableStoredComponent;

#[derive(Component)]
#[component(storage = "SparseSet")]
struct SparseStoredComponent;

Component Bundles

Define sets of Components that should be added together.

use bevy_ecs::prelude::*;

#[derive(Default, Component)]
struct Player;
#[derive(Default, Component)]
struct Position { x: f32, y: f32 }
#[derive(Default, Component)]
struct Velocity { x: f32, y: f32 }

#[derive(Bundle, Default)]
struct PlayerBundle {
    player: Player,
    position: Position,
    velocity: Velocity,
}

let mut world = World::new();

// Spawn a new entity and insert the default PlayerBundle
world.spawn(PlayerBundle::default());

// Bundles play well with Rust's struct update syntax
world.spawn(PlayerBundle {
    position: Position { x: 1.0, y: 1.0 },
    ..Default::default()
});

Events

Events offer a communication channel between one or more systems. Events can be sent using the system parameter EventWriter and received with EventReader.

use bevy_ecs::prelude::*;

#[derive(Event)]
struct MyEvent {
    message: String,
}

fn writer(mut writer: EventWriter<MyEvent>) {
    writer.send(MyEvent {
        message: "hello!".to_string(),
    });
}

fn reader(mut reader: EventReader<MyEvent>) {
    for event in reader.iter() {
    }
}

A minimal set up using events can be seen in events.rs.