bevy/examples/camera/camera_orbit.rs
Carter Anderson 015f2c69ca
Merge Style properties into Node. Use ComputedNode for computed properties. (#15975)
# Objective

Continue improving the user experience of our UI Node API in the
direction specified by [Bevy's Next Generation Scene / UI
System](https://github.com/bevyengine/bevy/discussions/14437)

## Solution

As specified in the document above, merge `Style` fields into `Node`,
and move "computed Node fields" into `ComputedNode` (I chose this name
over something like `ComputedNodeLayout` because it currently contains
more than just layout info. If we want to break this up / rename these
concepts, lets do that in a separate PR). `Style` has been removed.

This accomplishes a number of goals:

## Ergonomics wins

Specifying both `Node` and `Style` is now no longer required for
non-default styles

Before:
```rust
commands.spawn((
    Node::default(),
    Style {
        width:  Val::Px(100.),
        ..default()
    },
));
```

After:

```rust
commands.spawn(Node {
    width:  Val::Px(100.),
    ..default()
});
```

## Conceptual clarity

`Style` was never a comprehensive "style sheet". It only defined "core"
style properties that all `Nodes` shared. Any "styled property" that
couldn't fit that mold had to be in a separate component. A "real" style
system would style properties _across_ components (`Node`, `Button`,
etc). We have plans to build a true style system (see the doc linked
above).

By moving the `Style` fields to `Node`, we fully embrace `Node` as the
driving concept and remove the "style system" confusion.

## Next Steps

* Consider identifying and splitting out "style properties that aren't
core to Node". This should not happen for Bevy 0.15.

---

## Migration Guide

Move any fields set on `Style` into `Node` and replace all `Style`
component usage with `Node`.

Before:
```rust
commands.spawn((
    Node::default(),
    Style {
        width:  Val::Px(100.),
        ..default()
    },
));
```

After:

```rust
commands.spawn(Node {
    width:  Val::Px(100.),
    ..default()
});
```

For any usage of the "computed node properties" that used to live on
`Node`, use `ComputedNode` instead:

Before:
```rust
fn system(nodes: Query<&Node>) {
    for node in &nodes {
        let computed_size = node.size();
    }
}
```

After:
```rust
fn system(computed_nodes: Query<&ComputedNode>) {
    for computed_node in &computed_nodes {
        let computed_size = computed_node.size();
    }
}
```
2024-10-18 22:25:33 +00:00

141 lines
4.5 KiB
Rust

//! Shows how to orbit camera around a static scene using pitch, yaw, and roll.
//!
//! See also: `first_person_view_model` example, which does something similar but as a first-person
//! camera view.
use std::{f32::consts::FRAC_PI_2, ops::Range};
use bevy::{input::mouse::AccumulatedMouseMotion, prelude::*};
#[derive(Debug, Resource)]
struct CameraSettings {
pub orbit_distance: f32,
pub pitch_speed: f32,
// Clamp pitch to this range
pub pitch_range: Range<f32>,
pub roll_speed: f32,
pub yaw_speed: f32,
}
impl Default for CameraSettings {
fn default() -> Self {
// Limiting pitch stops some unexpected rotation past 90° up or down.
let pitch_limit = FRAC_PI_2 - 0.01;
Self {
// These values are completely arbitrary, chosen because they seem to produce
// "sensible" results for this example. Adjust as required.
orbit_distance: 20.0,
pitch_speed: 0.003,
pitch_range: -pitch_limit..pitch_limit,
roll_speed: 1.0,
yaw_speed: 0.004,
}
}
}
fn main() {
App::new()
.add_plugins(DefaultPlugins)
.init_resource::<CameraSettings>()
.add_systems(Startup, (setup, instructions))
.add_systems(Update, orbit)
.run();
}
/// Set up a simple 3D scene
fn setup(
mut commands: Commands,
mut meshes: ResMut<Assets<Mesh>>,
mut materials: ResMut<Assets<StandardMaterial>>,
) {
commands.spawn((
Name::new("Camera"),
Camera3d::default(),
Transform::from_xyz(5.0, 5.0, 5.0).looking_at(Vec3::ZERO, Vec3::Y),
));
commands.spawn((
Name::new("Plane"),
Mesh3d(meshes.add(Plane3d::default().mesh().size(5.0, 5.0))),
MeshMaterial3d(materials.add(StandardMaterial {
base_color: Color::srgb(0.3, 0.5, 0.3),
// Turning off culling keeps the plane visible when viewed from beneath.
cull_mode: None,
..default()
})),
));
commands.spawn((
Name::new("Cube"),
Mesh3d(meshes.add(Cuboid::default())),
MeshMaterial3d(materials.add(Color::srgb(0.8, 0.7, 0.6))),
Transform::from_xyz(1.5, 0.51, 1.5),
));
commands.spawn((
Name::new("Light"),
PointLight::default(),
Transform::from_xyz(3.0, 8.0, 5.0),
));
}
fn instructions(mut commands: Commands) {
commands.spawn((
Name::new("Instructions"),
Text::new(
"Mouse up or down: pitch\n\
Mouse left or right: yaw\n\
Mouse buttons: roll",
),
Node {
position_type: PositionType::Absolute,
top: Val::Px(12.),
left: Val::Px(12.),
..default()
},
));
}
fn orbit(
mut camera: Single<&mut Transform, With<Camera>>,
camera_settings: Res<CameraSettings>,
mouse_buttons: Res<ButtonInput<MouseButton>>,
mouse_motion: Res<AccumulatedMouseMotion>,
time: Res<Time>,
) {
let delta = mouse_motion.delta;
let mut delta_roll = 0.0;
if mouse_buttons.pressed(MouseButton::Left) {
delta_roll -= 1.0;
}
if mouse_buttons.pressed(MouseButton::Right) {
delta_roll += 1.0;
}
// Mouse motion is one of the few inputs that should not be multiplied by delta time,
// as we are already receiving the full movement since the last frame was rendered. Multiplying
// by delta time here would make the movement slower that it should be.
let delta_pitch = delta.y * camera_settings.pitch_speed;
let delta_yaw = delta.x * camera_settings.yaw_speed;
// Conversely, we DO need to factor in delta time for mouse button inputs.
delta_roll *= camera_settings.roll_speed * time.delta_secs();
// Obtain the existing pitch, yaw, and roll values from the transform.
let (yaw, pitch, roll) = camera.rotation.to_euler(EulerRot::YXZ);
// Establish the new yaw and pitch, preventing the pitch value from exceeding our limits.
let pitch = (pitch + delta_pitch).clamp(
camera_settings.pitch_range.start,
camera_settings.pitch_range.end,
);
let roll = roll + delta_roll;
let yaw = yaw + delta_yaw;
camera.rotation = Quat::from_euler(EulerRot::YXZ, yaw, pitch, roll);
// Adjust the translation to maintain the correct orientation toward the orbit target.
// In our example it's a static target, but this could easily be customised.
let target = Vec3::ZERO;
camera.translation = target - camera.forward() * camera_settings.orbit_distance;
}