bevy/crates/bevy_pbr/src/material.rs
JMS55 6cc96f4c1f
Meshlet software raster + start of cleanup (#14623)
# Objective
- Faster meshlet rasterization path for small triangles
- Avoid having to allocate and write out a triangle buffer
- Refactor gpu_scene.rs

## Solution
- Replace the 32bit visbuffer texture with a 64bit visbuffer buffer,
where the left 32 bits encode depth, and the right 32 bits encode the
existing cluster + triangle IDs. Can't use 64bit textures, wgpu/naga
doesn't support atomic ops on textures yet.
- Instead of writing out a buffer of packed cluster + triangle IDs (per
triangle) to raster, the culling pass now writes out a buffer of just
cluster IDs (per cluster, so less memory allocated, cheaper to write
out).
  - Clusters for software raster are allocated from the left side
- Clusters for hardware raster are allocated in the same buffer, from
the right side
- The buffer size is fixed at MeshletPlugin build time, and should be
set to a reasonable value for your scene (no warning on overflow, and no
good way to determine what value you need outside of renderdoc - I plan
to fix this in a future PR adding a meshlet stats overlay)
- Currently I don't have a heuristic for software vs hardware raster
selection for each cluster. The existing code is just a placeholder. I
need to profile on a release scene and come up with a heuristic,
probably in a future PR.
- The culling shader is getting pretty hard to follow at this point, but
I don't want to spend time improving it as the entire shader/pass is
getting rewritten/replaced in the near future.
- Software raster is a compute workgroup per-cluster. Each workgroup
loads and transforms the <=64 vertices of the cluster, and then
rasterizes the <=64 triangles of the cluster.
- Two variants are implemented: Scanline for clusters with any larger
triangles (still smaller than hardware is good at), and brute-force for
very very tiny triangles
- Once the shader determines that a pixel should be filled in, it does
an atomicMax() on the visbuffer to store the results, copying how Nanite
works
- On devices with a low max workgroups per dispatch limit, an extra
compute pass is inserted before software raster to convert from a 1d to
2d dispatch (I don't think 3d would ever be necessary).
- I haven't implemented the top-left rule or subpixel precision yet, I'm
leaving that for a future PR since I get usable results without it for
now
- Resources used:
https://kristoffer-dyrkorn.github.io/triangle-rasterizer and chapters
6-8 of
https://fgiesen.wordpress.com/2013/02/17/optimizing-sw-occlusion-culling-index
- Hardware raster now spawns 64*3 vertex invocations per meshlet,
instead of the actual meshlet vertex count. Extra invocations just
early-exit.
- While this is slower than the existing system, hardware draws should
be rare now that software raster is usable, and it saves a ton of memory
using the unified cluster ID buffer. This would be fixed if wgpu had
support for mesh shaders.
- Instead of writing to a color+depth attachment, the hardware raster
pass also does the same atomic visbuffer writes that software raster
uses.
- We have to bind a dummy render target anyways, as wgpu doesn't
currently support render passes without any attachments
- Material IDs are no longer written out during the main rasterization
passes.
- If we had async compute queues, we could overlap the software and
hardware raster passes.
- New material and depth resolve passes run at the end of the visbuffer
node, and write out view depth and material ID depth textures

### Misc changes
- Fixed cluster culling importing, but never actually using the previous
view uniforms when doing occlusion culling
- Fixed incorrectly adding the LOD error twice when building the meshlet
mesh
- Splitup gpu_scene module into meshlet_mesh_manager, instance_manager,
and resource_manager
- resource_manager is still too complex and inefficient (extract and
prepare are way too expensive). I plan on improving this in a future PR,
but for now ResourceManager is mostly a 1:1 port of the leftover
MeshletGpuScene bits.
- Material draw passes have been renamed to the more accurate material
shade pass, as well as some other misc renaming (in the future, these
will be compute shaders even, and not actual draw calls)

---

## Migration Guide
- TBD (ask me at the end of the release for meshlet changes as a whole)

---------

Co-authored-by: vero <email@atlasdostal.com>
2024-08-26 17:54:34 +00:00

1001 lines
38 KiB
Rust

#[cfg(feature = "meshlet")]
use crate::meshlet::{
prepare_material_meshlet_meshes_main_opaque_pass, queue_material_meshlet_meshes,
InstanceManager,
};
use crate::*;
use bevy_asset::{Asset, AssetId, AssetServer};
use bevy_core_pipeline::{
core_3d::{
AlphaMask3d, Camera3d, Opaque3d, Opaque3dBinKey, ScreenSpaceTransmissionQuality,
Transmissive3d, Transparent3d,
},
prepass::{
DeferredPrepass, DepthPrepass, MotionVectorPrepass, NormalPrepass, OpaqueNoLightmap3dBinKey,
},
tonemapping::{DebandDither, Tonemapping},
};
use bevy_derive::{Deref, DerefMut};
use bevy_ecs::{
prelude::*,
system::{lifetimeless::SRes, SystemParamItem},
};
use bevy_reflect::Reflect;
use bevy_render::{
camera::TemporalJitter,
extract_instances::{ExtractInstancesPlugin, ExtractedInstances},
extract_resource::ExtractResource,
mesh::{MeshVertexBufferLayoutRef, RenderMesh},
render_asset::{PrepareAssetError, RenderAsset, RenderAssetPlugin, RenderAssets},
render_phase::*,
render_resource::*,
renderer::RenderDevice,
view::{ExtractedView, Msaa, RenderVisibilityRanges, VisibleEntities, WithMesh},
};
use bevy_utils::tracing::error;
use std::marker::PhantomData;
use std::sync::atomic::{AtomicU32, Ordering};
use std::{hash::Hash, num::NonZeroU32};
use self::{irradiance_volume::IrradianceVolume, prelude::EnvironmentMapLight};
/// Materials are used alongside [`MaterialPlugin`] and [`MaterialMeshBundle`]
/// to spawn entities that are rendered with a specific [`Material`] type. They serve as an easy to use high level
/// way to render [`Mesh`](bevy_render::mesh::Mesh) entities with custom shader logic.
///
/// Materials must implement [`AsBindGroup`] to define how data will be transferred to the GPU and bound in shaders.
/// [`AsBindGroup`] can be derived, which makes generating bindings straightforward. See the [`AsBindGroup`] docs for details.
///
/// # Example
///
/// Here is a simple Material implementation. The [`AsBindGroup`] derive has many features. To see what else is available,
/// check out the [`AsBindGroup`] documentation.
/// ```
/// # use bevy_pbr::{Material, MaterialMeshBundle};
/// # use bevy_ecs::prelude::*;
/// # use bevy_reflect::TypePath;
/// # use bevy_render::{render_resource::{AsBindGroup, ShaderRef}, texture::Image};
/// # use bevy_color::LinearRgba;
/// # use bevy_color::palettes::basic::RED;
/// # use bevy_asset::{Handle, AssetServer, Assets, Asset};
///
/// #[derive(AsBindGroup, Debug, Clone, Asset, TypePath)]
/// pub struct CustomMaterial {
/// // Uniform bindings must implement `ShaderType`, which will be used to convert the value to
/// // its shader-compatible equivalent. Most core math types already implement `ShaderType`.
/// #[uniform(0)]
/// color: LinearRgba,
/// // Images can be bound as textures in shaders. If the Image's sampler is also needed, just
/// // add the sampler attribute with a different binding index.
/// #[texture(1)]
/// #[sampler(2)]
/// color_texture: Handle<Image>,
/// }
///
/// // All functions on `Material` have default impls. You only need to implement the
/// // functions that are relevant for your material.
/// impl Material for CustomMaterial {
/// fn fragment_shader() -> ShaderRef {
/// "shaders/custom_material.wgsl".into()
/// }
/// }
///
/// // Spawn an entity using `CustomMaterial`.
/// fn setup(mut commands: Commands, mut materials: ResMut<Assets<CustomMaterial>>, asset_server: Res<AssetServer>) {
/// commands.spawn(MaterialMeshBundle {
/// material: materials.add(CustomMaterial {
/// color: RED.into(),
/// color_texture: asset_server.load("some_image.png"),
/// }),
/// ..Default::default()
/// });
/// }
/// ```
/// In WGSL shaders, the material's binding would look like this:
///
/// ```wgsl
/// @group(2) @binding(0) var<uniform> color: vec4<f32>;
/// @group(2) @binding(1) var color_texture: texture_2d<f32>;
/// @group(2) @binding(2) var color_sampler: sampler;
/// ```
pub trait Material: Asset + AsBindGroup + Clone + Sized {
/// Returns this material's vertex shader. If [`ShaderRef::Default`] is returned, the default mesh vertex shader
/// will be used.
fn vertex_shader() -> ShaderRef {
ShaderRef::Default
}
/// Returns this material's fragment shader. If [`ShaderRef::Default`] is returned, the default mesh fragment shader
/// will be used.
#[allow(unused_variables)]
fn fragment_shader() -> ShaderRef {
ShaderRef::Default
}
/// Returns this material's [`AlphaMode`]. Defaults to [`AlphaMode::Opaque`].
#[inline]
fn alpha_mode(&self) -> AlphaMode {
AlphaMode::Opaque
}
/// Returns if this material should be rendered by the deferred or forward renderer.
/// for `AlphaMode::Opaque` or `AlphaMode::Mask` materials.
/// If `OpaqueRendererMethod::Auto`, it will default to what is selected in the `DefaultOpaqueRendererMethod` resource.
#[inline]
fn opaque_render_method(&self) -> OpaqueRendererMethod {
OpaqueRendererMethod::Forward
}
#[inline]
/// Add a bias to the view depth of the mesh which can be used to force a specific render order.
/// for meshes with similar depth, to avoid z-fighting.
/// The bias is in depth-texture units so large values may be needed to overcome small depth differences.
fn depth_bias(&self) -> f32 {
0.0
}
#[inline]
/// Returns whether the material would like to read from [`ViewTransmissionTexture`](bevy_core_pipeline::core_3d::ViewTransmissionTexture).
///
/// This allows taking color output from the [`Opaque3d`] pass as an input, (for screen-space transmission) but requires
/// rendering to take place in a separate [`Transmissive3d`] pass.
fn reads_view_transmission_texture(&self) -> bool {
false
}
/// Returns this material's prepass vertex shader. If [`ShaderRef::Default`] is returned, the default prepass vertex shader
/// will be used.
///
/// This is used for the various [prepasses](bevy_core_pipeline::prepass) as well as for generating the depth maps
/// required for shadow mapping.
fn prepass_vertex_shader() -> ShaderRef {
ShaderRef::Default
}
/// Returns this material's prepass fragment shader. If [`ShaderRef::Default`] is returned, the default prepass fragment shader
/// will be used.
///
/// This is used for the various [prepasses](bevy_core_pipeline::prepass) as well as for generating the depth maps
/// required for shadow mapping.
#[allow(unused_variables)]
fn prepass_fragment_shader() -> ShaderRef {
ShaderRef::Default
}
/// Returns this material's deferred vertex shader. If [`ShaderRef::Default`] is returned, the default deferred vertex shader
/// will be used.
fn deferred_vertex_shader() -> ShaderRef {
ShaderRef::Default
}
/// Returns this material's deferred fragment shader. If [`ShaderRef::Default`] is returned, the default deferred fragment shader
/// will be used.
#[allow(unused_variables)]
fn deferred_fragment_shader() -> ShaderRef {
ShaderRef::Default
}
/// Returns this material's [`crate::meshlet::MeshletMesh`] fragment shader. If [`ShaderRef::Default`] is returned,
/// the default meshlet mesh fragment shader will be used.
///
/// This is part of an experimental feature, and is unnecessary to implement unless you are using `MeshletMesh`'s.
#[allow(unused_variables)]
#[cfg(feature = "meshlet")]
fn meshlet_mesh_fragment_shader() -> ShaderRef {
ShaderRef::Default
}
/// Returns this material's [`crate::meshlet::MeshletMesh`] prepass fragment shader. If [`ShaderRef::Default`] is returned,
/// the default meshlet mesh prepass fragment shader will be used.
///
/// This is part of an experimental feature, and is unnecessary to implement unless you are using `MeshletMesh`'s.
#[allow(unused_variables)]
#[cfg(feature = "meshlet")]
fn meshlet_mesh_prepass_fragment_shader() -> ShaderRef {
ShaderRef::Default
}
/// Returns this material's [`crate::meshlet::MeshletMesh`] deferred fragment shader. If [`ShaderRef::Default`] is returned,
/// the default meshlet mesh deferred fragment shader will be used.
///
/// This is part of an experimental feature, and is unnecessary to implement unless you are using `MeshletMesh`'s.
#[allow(unused_variables)]
#[cfg(feature = "meshlet")]
fn meshlet_mesh_deferred_fragment_shader() -> ShaderRef {
ShaderRef::Default
}
/// Customizes the default [`RenderPipelineDescriptor`] for a specific entity using the entity's
/// [`MaterialPipelineKey`] and [`MeshVertexBufferLayoutRef`] as input.
#[allow(unused_variables)]
#[inline]
fn specialize(
pipeline: &MaterialPipeline<Self>,
descriptor: &mut RenderPipelineDescriptor,
layout: &MeshVertexBufferLayoutRef,
key: MaterialPipelineKey<Self>,
) -> Result<(), SpecializedMeshPipelineError> {
Ok(())
}
}
/// Adds the necessary ECS resources and render logic to enable rendering entities using the given [`Material`]
/// asset type.
pub struct MaterialPlugin<M: Material> {
/// Controls if the prepass is enabled for the Material.
/// For more information about what a prepass is, see the [`bevy_core_pipeline::prepass`] docs.
///
/// When it is enabled, it will automatically add the [`PrepassPlugin`]
/// required to make the prepass work on this Material.
pub prepass_enabled: bool,
/// Controls if shadows are enabled for the Material.
pub shadows_enabled: bool,
pub _marker: PhantomData<M>,
}
impl<M: Material> Default for MaterialPlugin<M> {
fn default() -> Self {
Self {
prepass_enabled: true,
shadows_enabled: true,
_marker: Default::default(),
}
}
}
impl<M: Material> Plugin for MaterialPlugin<M>
where
M::Data: PartialEq + Eq + Hash + Clone,
{
fn build(&self, app: &mut App) {
app.init_asset::<M>().add_plugins((
ExtractInstancesPlugin::<AssetId<M>>::extract_visible(),
RenderAssetPlugin::<PreparedMaterial<M>>::default(),
));
if let Some(render_app) = app.get_sub_app_mut(RenderApp) {
render_app
.init_resource::<DrawFunctions<Shadow>>()
.add_render_command::<Shadow, DrawPrepass<M>>()
.add_render_command::<Transmissive3d, DrawMaterial<M>>()
.add_render_command::<Transparent3d, DrawMaterial<M>>()
.add_render_command::<Opaque3d, DrawMaterial<M>>()
.add_render_command::<AlphaMask3d, DrawMaterial<M>>()
.init_resource::<SpecializedMeshPipelines<MaterialPipeline<M>>>()
.add_systems(
Render,
queue_material_meshes::<M>
.in_set(RenderSet::QueueMeshes)
.after(prepare_assets::<PreparedMaterial<M>>),
);
if self.shadows_enabled {
render_app.add_systems(
Render,
queue_shadows::<M>
.in_set(RenderSet::QueueMeshes)
.after(prepare_assets::<PreparedMaterial<M>>),
);
}
#[cfg(feature = "meshlet")]
render_app.add_systems(
Render,
queue_material_meshlet_meshes::<M>
.in_set(RenderSet::QueueMeshes)
.run_if(resource_exists::<InstanceManager>),
);
#[cfg(feature = "meshlet")]
render_app.add_systems(
Render,
prepare_material_meshlet_meshes_main_opaque_pass::<M>
.in_set(RenderSet::QueueMeshes)
.after(prepare_assets::<PreparedMaterial<M>>)
.before(queue_material_meshlet_meshes::<M>)
.run_if(resource_exists::<InstanceManager>),
);
}
if self.shadows_enabled || self.prepass_enabled {
// PrepassPipelinePlugin is required for shadow mapping and the optional PrepassPlugin
app.add_plugins(PrepassPipelinePlugin::<M>::default());
}
if self.prepass_enabled {
app.add_plugins(PrepassPlugin::<M>::default());
}
}
fn finish(&self, app: &mut App) {
if let Some(render_app) = app.get_sub_app_mut(RenderApp) {
render_app.init_resource::<MaterialPipeline<M>>();
}
}
}
/// A key uniquely identifying a specialized [`MaterialPipeline`].
pub struct MaterialPipelineKey<M: Material> {
pub mesh_key: MeshPipelineKey,
pub bind_group_data: M::Data,
}
impl<M: Material> Eq for MaterialPipelineKey<M> where M::Data: PartialEq {}
impl<M: Material> PartialEq for MaterialPipelineKey<M>
where
M::Data: PartialEq,
{
fn eq(&self, other: &Self) -> bool {
self.mesh_key == other.mesh_key && self.bind_group_data == other.bind_group_data
}
}
impl<M: Material> Clone for MaterialPipelineKey<M>
where
M::Data: Clone,
{
fn clone(&self) -> Self {
Self {
mesh_key: self.mesh_key,
bind_group_data: self.bind_group_data.clone(),
}
}
}
impl<M: Material> Hash for MaterialPipelineKey<M>
where
M::Data: Hash,
{
fn hash<H: std::hash::Hasher>(&self, state: &mut H) {
self.mesh_key.hash(state);
self.bind_group_data.hash(state);
}
}
/// Render pipeline data for a given [`Material`].
#[derive(Resource)]
pub struct MaterialPipeline<M: Material> {
pub mesh_pipeline: MeshPipeline,
pub material_layout: BindGroupLayout,
pub vertex_shader: Option<Handle<Shader>>,
pub fragment_shader: Option<Handle<Shader>>,
pub marker: PhantomData<M>,
}
impl<M: Material> Clone for MaterialPipeline<M> {
fn clone(&self) -> Self {
Self {
mesh_pipeline: self.mesh_pipeline.clone(),
material_layout: self.material_layout.clone(),
vertex_shader: self.vertex_shader.clone(),
fragment_shader: self.fragment_shader.clone(),
marker: PhantomData,
}
}
}
impl<M: Material> SpecializedMeshPipeline for MaterialPipeline<M>
where
M::Data: PartialEq + Eq + Hash + Clone,
{
type Key = MaterialPipelineKey<M>;
fn specialize(
&self,
key: Self::Key,
layout: &MeshVertexBufferLayoutRef,
) -> Result<RenderPipelineDescriptor, SpecializedMeshPipelineError> {
let mut descriptor = self.mesh_pipeline.specialize(key.mesh_key, layout)?;
if let Some(vertex_shader) = &self.vertex_shader {
descriptor.vertex.shader = vertex_shader.clone();
}
if let Some(fragment_shader) = &self.fragment_shader {
descriptor.fragment.as_mut().unwrap().shader = fragment_shader.clone();
}
descriptor.layout.insert(2, self.material_layout.clone());
M::specialize(self, &mut descriptor, layout, key)?;
Ok(descriptor)
}
}
impl<M: Material> FromWorld for MaterialPipeline<M> {
fn from_world(world: &mut World) -> Self {
let asset_server = world.resource::<AssetServer>();
let render_device = world.resource::<RenderDevice>();
MaterialPipeline {
mesh_pipeline: world.resource::<MeshPipeline>().clone(),
material_layout: M::bind_group_layout(render_device),
vertex_shader: match M::vertex_shader() {
ShaderRef::Default => None,
ShaderRef::Handle(handle) => Some(handle),
ShaderRef::Path(path) => Some(asset_server.load(path)),
},
fragment_shader: match M::fragment_shader() {
ShaderRef::Default => None,
ShaderRef::Handle(handle) => Some(handle),
ShaderRef::Path(path) => Some(asset_server.load(path)),
},
marker: PhantomData,
}
}
}
type DrawMaterial<M> = (
SetItemPipeline,
SetMeshViewBindGroup<0>,
SetMeshBindGroup<1>,
SetMaterialBindGroup<M, 2>,
DrawMesh,
);
/// Sets the bind group for a given [`Material`] at the configured `I` index.
pub struct SetMaterialBindGroup<M: Material, const I: usize>(PhantomData<M>);
impl<P: PhaseItem, M: Material, const I: usize> RenderCommand<P> for SetMaterialBindGroup<M, I> {
type Param = (
SRes<RenderAssets<PreparedMaterial<M>>>,
SRes<RenderMaterialInstances<M>>,
);
type ViewQuery = ();
type ItemQuery = ();
#[inline]
fn render<'w>(
item: &P,
_view: (),
_item_query: Option<()>,
(materials, material_instances): SystemParamItem<'w, '_, Self::Param>,
pass: &mut TrackedRenderPass<'w>,
) -> RenderCommandResult {
let materials = materials.into_inner();
let material_instances = material_instances.into_inner();
let Some(material_asset_id) = material_instances.get(&item.entity()) else {
return RenderCommandResult::Skip;
};
let Some(material) = materials.get(*material_asset_id) else {
return RenderCommandResult::Skip;
};
pass.set_bind_group(I, &material.bind_group, &[]);
RenderCommandResult::Success
}
}
pub type RenderMaterialInstances<M> = ExtractedInstances<AssetId<M>>;
pub const fn alpha_mode_pipeline_key(alpha_mode: AlphaMode, msaa: &Msaa) -> MeshPipelineKey {
match alpha_mode {
// Premultiplied and Add share the same pipeline key
// They're made distinct in the PBR shader, via `premultiply_alpha()`
AlphaMode::Premultiplied | AlphaMode::Add => MeshPipelineKey::BLEND_PREMULTIPLIED_ALPHA,
AlphaMode::Blend => MeshPipelineKey::BLEND_ALPHA,
AlphaMode::Multiply => MeshPipelineKey::BLEND_MULTIPLY,
AlphaMode::Mask(_) => MeshPipelineKey::MAY_DISCARD,
AlphaMode::AlphaToCoverage => match *msaa {
Msaa::Off => MeshPipelineKey::MAY_DISCARD,
_ => MeshPipelineKey::BLEND_ALPHA_TO_COVERAGE,
},
_ => MeshPipelineKey::NONE,
}
}
pub const fn tonemapping_pipeline_key(tonemapping: Tonemapping) -> MeshPipelineKey {
match tonemapping {
Tonemapping::None => MeshPipelineKey::TONEMAP_METHOD_NONE,
Tonemapping::Reinhard => MeshPipelineKey::TONEMAP_METHOD_REINHARD,
Tonemapping::ReinhardLuminance => MeshPipelineKey::TONEMAP_METHOD_REINHARD_LUMINANCE,
Tonemapping::AcesFitted => MeshPipelineKey::TONEMAP_METHOD_ACES_FITTED,
Tonemapping::AgX => MeshPipelineKey::TONEMAP_METHOD_AGX,
Tonemapping::SomewhatBoringDisplayTransform => {
MeshPipelineKey::TONEMAP_METHOD_SOMEWHAT_BORING_DISPLAY_TRANSFORM
}
Tonemapping::TonyMcMapface => MeshPipelineKey::TONEMAP_METHOD_TONY_MC_MAPFACE,
Tonemapping::BlenderFilmic => MeshPipelineKey::TONEMAP_METHOD_BLENDER_FILMIC,
}
}
pub const fn screen_space_specular_transmission_pipeline_key(
screen_space_transmissive_blur_quality: ScreenSpaceTransmissionQuality,
) -> MeshPipelineKey {
match screen_space_transmissive_blur_quality {
ScreenSpaceTransmissionQuality::Low => {
MeshPipelineKey::SCREEN_SPACE_SPECULAR_TRANSMISSION_LOW
}
ScreenSpaceTransmissionQuality::Medium => {
MeshPipelineKey::SCREEN_SPACE_SPECULAR_TRANSMISSION_MEDIUM
}
ScreenSpaceTransmissionQuality::High => {
MeshPipelineKey::SCREEN_SPACE_SPECULAR_TRANSMISSION_HIGH
}
ScreenSpaceTransmissionQuality::Ultra => {
MeshPipelineKey::SCREEN_SPACE_SPECULAR_TRANSMISSION_ULTRA
}
}
}
/// For each view, iterates over all the meshes visible from that view and adds
/// them to [`BinnedRenderPhase`]s or [`SortedRenderPhase`]s as appropriate.
#[allow(clippy::too_many_arguments)]
pub fn queue_material_meshes<M: Material>(
(
opaque_draw_functions,
alpha_mask_draw_functions,
transmissive_draw_functions,
transparent_draw_functions,
): (
Res<DrawFunctions<Opaque3d>>,
Res<DrawFunctions<AlphaMask3d>>,
Res<DrawFunctions<Transmissive3d>>,
Res<DrawFunctions<Transparent3d>>,
),
material_pipeline: Res<MaterialPipeline<M>>,
mut pipelines: ResMut<SpecializedMeshPipelines<MaterialPipeline<M>>>,
pipeline_cache: Res<PipelineCache>,
render_meshes: Res<RenderAssets<RenderMesh>>,
render_materials: Res<RenderAssets<PreparedMaterial<M>>>,
render_mesh_instances: Res<RenderMeshInstances>,
render_material_instances: Res<RenderMaterialInstances<M>>,
render_lightmaps: Res<RenderLightmaps>,
render_visibility_ranges: Res<RenderVisibilityRanges>,
mut opaque_render_phases: ResMut<ViewBinnedRenderPhases<Opaque3d>>,
mut alpha_mask_render_phases: ResMut<ViewBinnedRenderPhases<AlphaMask3d>>,
mut transmissive_render_phases: ResMut<ViewSortedRenderPhases<Transmissive3d>>,
mut transparent_render_phases: ResMut<ViewSortedRenderPhases<Transparent3d>>,
mut views: Query<(
Entity,
&ExtractedView,
&VisibleEntities,
&Msaa,
Option<&Tonemapping>,
Option<&DebandDither>,
Option<&ShadowFilteringMethod>,
Has<ScreenSpaceAmbientOcclusionSettings>,
(
Has<NormalPrepass>,
Has<DepthPrepass>,
Has<MotionVectorPrepass>,
Has<DeferredPrepass>,
),
Option<&Camera3d>,
Has<TemporalJitter>,
Option<&Projection>,
(
Has<RenderViewLightProbes<EnvironmentMapLight>>,
Has<RenderViewLightProbes<IrradianceVolume>>,
),
)>,
) where
M::Data: PartialEq + Eq + Hash + Clone,
{
for (
view_entity,
view,
visible_entities,
msaa,
tonemapping,
dither,
shadow_filter_method,
ssao,
(normal_prepass, depth_prepass, motion_vector_prepass, deferred_prepass),
camera_3d,
temporal_jitter,
projection,
(has_environment_maps, has_irradiance_volumes),
) in &mut views
{
let (
Some(opaque_phase),
Some(alpha_mask_phase),
Some(transmissive_phase),
Some(transparent_phase),
) = (
opaque_render_phases.get_mut(&view_entity),
alpha_mask_render_phases.get_mut(&view_entity),
transmissive_render_phases.get_mut(&view_entity),
transparent_render_phases.get_mut(&view_entity),
)
else {
continue;
};
let draw_opaque_pbr = opaque_draw_functions.read().id::<DrawMaterial<M>>();
let draw_alpha_mask_pbr = alpha_mask_draw_functions.read().id::<DrawMaterial<M>>();
let draw_transmissive_pbr = transmissive_draw_functions.read().id::<DrawMaterial<M>>();
let draw_transparent_pbr = transparent_draw_functions.read().id::<DrawMaterial<M>>();
let mut view_key = MeshPipelineKey::from_msaa_samples(msaa.samples())
| MeshPipelineKey::from_hdr(view.hdr);
if normal_prepass {
view_key |= MeshPipelineKey::NORMAL_PREPASS;
}
if depth_prepass {
view_key |= MeshPipelineKey::DEPTH_PREPASS;
}
if motion_vector_prepass {
view_key |= MeshPipelineKey::MOTION_VECTOR_PREPASS;
}
if deferred_prepass {
view_key |= MeshPipelineKey::DEFERRED_PREPASS;
}
if temporal_jitter {
view_key |= MeshPipelineKey::TEMPORAL_JITTER;
}
if has_environment_maps {
view_key |= MeshPipelineKey::ENVIRONMENT_MAP;
}
if has_irradiance_volumes {
view_key |= MeshPipelineKey::IRRADIANCE_VOLUME;
}
if let Some(projection) = projection {
view_key |= match projection {
Projection::Perspective(_) => MeshPipelineKey::VIEW_PROJECTION_PERSPECTIVE,
Projection::Orthographic(_) => MeshPipelineKey::VIEW_PROJECTION_ORTHOGRAPHIC,
};
}
match shadow_filter_method.unwrap_or(&ShadowFilteringMethod::default()) {
ShadowFilteringMethod::Hardware2x2 => {
view_key |= MeshPipelineKey::SHADOW_FILTER_METHOD_HARDWARE_2X2;
}
ShadowFilteringMethod::Gaussian => {
view_key |= MeshPipelineKey::SHADOW_FILTER_METHOD_GAUSSIAN;
}
ShadowFilteringMethod::Temporal => {
view_key |= MeshPipelineKey::SHADOW_FILTER_METHOD_TEMPORAL;
}
}
if !view.hdr {
if let Some(tonemapping) = tonemapping {
view_key |= MeshPipelineKey::TONEMAP_IN_SHADER;
view_key |= tonemapping_pipeline_key(*tonemapping);
}
if let Some(DebandDither::Enabled) = dither {
view_key |= MeshPipelineKey::DEBAND_DITHER;
}
}
if ssao {
view_key |= MeshPipelineKey::SCREEN_SPACE_AMBIENT_OCCLUSION;
}
if let Some(camera_3d) = camera_3d {
view_key |= screen_space_specular_transmission_pipeline_key(
camera_3d.screen_space_specular_transmission_quality,
);
}
let rangefinder = view.rangefinder3d();
for visible_entity in visible_entities.iter::<WithMesh>() {
let Some(material_asset_id) = render_material_instances.get(visible_entity) else {
continue;
};
let Some(mesh_instance) = render_mesh_instances.render_mesh_queue_data(*visible_entity)
else {
continue;
};
let Some(mesh) = render_meshes.get(mesh_instance.mesh_asset_id) else {
continue;
};
let Some(material) = render_materials.get(*material_asset_id) else {
continue;
};
let mut mesh_pipeline_key_bits = material.properties.mesh_pipeline_key_bits;
mesh_pipeline_key_bits.insert(alpha_mode_pipeline_key(
material.properties.alpha_mode,
msaa,
));
let mut mesh_key = view_key
| MeshPipelineKey::from_bits_retain(mesh.key_bits.bits())
| mesh_pipeline_key_bits;
let lightmap_image = render_lightmaps
.render_lightmaps
.get(visible_entity)
.map(|lightmap| lightmap.image);
if lightmap_image.is_some() {
mesh_key |= MeshPipelineKey::LIGHTMAPPED;
}
if render_visibility_ranges.entity_has_crossfading_visibility_ranges(*visible_entity) {
mesh_key |= MeshPipelineKey::VISIBILITY_RANGE_DITHER;
}
if motion_vector_prepass {
// If the previous frame have skins or morph targets, note that.
if mesh_instance
.flags
.contains(RenderMeshInstanceFlags::HAS_PREVIOUS_SKIN)
{
mesh_key |= MeshPipelineKey::HAS_PREVIOUS_SKIN;
}
if mesh_instance
.flags
.contains(RenderMeshInstanceFlags::HAS_PREVIOUS_MORPH)
{
mesh_key |= MeshPipelineKey::HAS_PREVIOUS_MORPH;
}
}
let pipeline_id = pipelines.specialize(
&pipeline_cache,
&material_pipeline,
MaterialPipelineKey {
mesh_key,
bind_group_data: material.key.clone(),
},
&mesh.layout,
);
let pipeline_id = match pipeline_id {
Ok(id) => id,
Err(err) => {
error!("{}", err);
continue;
}
};
mesh_instance
.material_bind_group_id
.set(material.get_bind_group_id());
match mesh_key
.intersection(MeshPipelineKey::BLEND_RESERVED_BITS | MeshPipelineKey::MAY_DISCARD)
{
MeshPipelineKey::BLEND_OPAQUE | MeshPipelineKey::BLEND_ALPHA_TO_COVERAGE => {
if material.properties.reads_view_transmission_texture {
let distance = rangefinder.distance_translation(&mesh_instance.translation)
+ material.properties.depth_bias;
transmissive_phase.add(Transmissive3d {
entity: *visible_entity,
draw_function: draw_transmissive_pbr,
pipeline: pipeline_id,
distance,
batch_range: 0..1,
extra_index: PhaseItemExtraIndex::NONE,
});
} else if material.properties.render_method == OpaqueRendererMethod::Forward {
let bin_key = Opaque3dBinKey {
draw_function: draw_opaque_pbr,
pipeline: pipeline_id,
asset_id: mesh_instance.mesh_asset_id.into(),
material_bind_group_id: material.get_bind_group_id().0,
lightmap_image,
};
opaque_phase.add(
bin_key,
*visible_entity,
BinnedRenderPhaseType::mesh(mesh_instance.should_batch()),
);
}
}
// Alpha mask
MeshPipelineKey::MAY_DISCARD => {
if material.properties.reads_view_transmission_texture {
let distance = rangefinder.distance_translation(&mesh_instance.translation)
+ material.properties.depth_bias;
transmissive_phase.add(Transmissive3d {
entity: *visible_entity,
draw_function: draw_transmissive_pbr,
pipeline: pipeline_id,
distance,
batch_range: 0..1,
extra_index: PhaseItemExtraIndex::NONE,
});
} else if material.properties.render_method == OpaqueRendererMethod::Forward {
let bin_key = OpaqueNoLightmap3dBinKey {
draw_function: draw_alpha_mask_pbr,
pipeline: pipeline_id,
asset_id: mesh_instance.mesh_asset_id.into(),
material_bind_group_id: material.get_bind_group_id().0,
};
alpha_mask_phase.add(
bin_key,
*visible_entity,
BinnedRenderPhaseType::mesh(mesh_instance.should_batch()),
);
}
}
_ => {
let distance = rangefinder.distance_translation(&mesh_instance.translation)
+ material.properties.depth_bias;
transparent_phase.add(Transparent3d {
entity: *visible_entity,
draw_function: draw_transparent_pbr,
pipeline: pipeline_id,
distance,
batch_range: 0..1,
extra_index: PhaseItemExtraIndex::NONE,
});
}
}
}
}
}
/// Default render method used for opaque materials.
#[derive(Default, Resource, Clone, Debug, ExtractResource, Reflect)]
pub struct DefaultOpaqueRendererMethod(OpaqueRendererMethod);
impl DefaultOpaqueRendererMethod {
pub fn forward() -> Self {
DefaultOpaqueRendererMethod(OpaqueRendererMethod::Forward)
}
pub fn deferred() -> Self {
DefaultOpaqueRendererMethod(OpaqueRendererMethod::Deferred)
}
pub fn set_to_forward(&mut self) {
self.0 = OpaqueRendererMethod::Forward;
}
pub fn set_to_deferred(&mut self) {
self.0 = OpaqueRendererMethod::Deferred;
}
}
/// Render method used for opaque materials.
///
/// The forward rendering main pass draws each mesh entity and shades it according to its
/// corresponding material and the lights that affect it. Some render features like Screen Space
/// Ambient Occlusion require running depth and normal prepasses, that are 'deferred'-like
/// prepasses over all mesh entities to populate depth and normal textures. This means that when
/// using render features that require running prepasses, multiple passes over all visible geometry
/// are required. This can be slow if there is a lot of geometry that cannot be batched into few
/// draws.
///
/// Deferred rendering runs a prepass to gather not only geometric information like depth and
/// normals, but also all the material properties like base color, emissive color, reflectance,
/// metalness, etc, and writes them into a deferred 'g-buffer' texture. The deferred main pass is
/// then a fullscreen pass that reads data from these textures and executes shading. This allows
/// for one pass over geometry, but is at the cost of not being able to use MSAA, and has heavier
/// bandwidth usage which can be unsuitable for low end mobile or other bandwidth-constrained devices.
///
/// If a material indicates `OpaqueRendererMethod::Auto`, `DefaultOpaqueRendererMethod` will be used.
#[derive(Default, Clone, Copy, Debug, PartialEq, Reflect)]
pub enum OpaqueRendererMethod {
#[default]
Forward,
Deferred,
Auto,
}
/// Common [`Material`] properties, calculated for a specific material instance.
pub struct MaterialProperties {
/// Is this material should be rendered by the deferred renderer when.
/// [`AlphaMode::Opaque`] or [`AlphaMode::Mask`]
pub render_method: OpaqueRendererMethod,
/// The [`AlphaMode`] of this material.
pub alpha_mode: AlphaMode,
/// The bits in the [`MeshPipelineKey`] for this material.
///
/// These are precalculated so that we can just "or" them together in
/// [`queue_material_meshes`].
pub mesh_pipeline_key_bits: MeshPipelineKey,
/// Add a bias to the view depth of the mesh which can be used to force a specific render order
/// for meshes with equal depth, to avoid z-fighting.
/// The bias is in depth-texture units so large values may be needed to overcome small depth differences.
pub depth_bias: f32,
/// Whether the material would like to read from [`ViewTransmissionTexture`](bevy_core_pipeline::core_3d::ViewTransmissionTexture).
///
/// This allows taking color output from the [`Opaque3d`] pass as an input, (for screen-space transmission) but requires
/// rendering to take place in a separate [`Transmissive3d`] pass.
pub reads_view_transmission_texture: bool,
}
/// Data prepared for a [`Material`] instance.
pub struct PreparedMaterial<T: Material> {
pub bindings: Vec<(u32, OwnedBindingResource)>,
pub bind_group: BindGroup,
pub key: T::Data,
pub properties: MaterialProperties,
}
impl<M: Material> RenderAsset for PreparedMaterial<M> {
type SourceAsset = M;
type Param = (
SRes<RenderDevice>,
SRes<MaterialPipeline<M>>,
SRes<DefaultOpaqueRendererMethod>,
M::Param,
);
fn prepare_asset(
material: Self::SourceAsset,
(render_device, pipeline, default_opaque_render_method, ref mut material_param): &mut SystemParamItem<Self::Param>,
) -> Result<Self, PrepareAssetError<Self::SourceAsset>> {
match material.as_bind_group(&pipeline.material_layout, render_device, material_param) {
Ok(prepared) => {
let method = match material.opaque_render_method() {
OpaqueRendererMethod::Forward => OpaqueRendererMethod::Forward,
OpaqueRendererMethod::Deferred => OpaqueRendererMethod::Deferred,
OpaqueRendererMethod::Auto => default_opaque_render_method.0,
};
let mut mesh_pipeline_key_bits = MeshPipelineKey::empty();
mesh_pipeline_key_bits.set(
MeshPipelineKey::READS_VIEW_TRANSMISSION_TEXTURE,
material.reads_view_transmission_texture(),
);
Ok(PreparedMaterial {
bindings: prepared.bindings,
bind_group: prepared.bind_group,
key: prepared.data,
properties: MaterialProperties {
alpha_mode: material.alpha_mode(),
depth_bias: material.depth_bias(),
reads_view_transmission_texture: mesh_pipeline_key_bits
.contains(MeshPipelineKey::READS_VIEW_TRANSMISSION_TEXTURE),
render_method: method,
mesh_pipeline_key_bits,
},
})
}
Err(AsBindGroupError::RetryNextUpdate) => {
Err(PrepareAssetError::RetryNextUpdate(material))
}
Err(other) => Err(PrepareAssetError::AsBindGroupError(other)),
}
}
}
#[derive(Component, Clone, Copy, Default, PartialEq, Eq, Deref, DerefMut)]
pub struct MaterialBindGroupId(pub Option<BindGroupId>);
impl MaterialBindGroupId {
pub fn new(id: BindGroupId) -> Self {
Self(Some(id))
}
}
impl From<BindGroup> for MaterialBindGroupId {
fn from(value: BindGroup) -> Self {
Self::new(value.id())
}
}
/// An atomic version of [`MaterialBindGroupId`] that can be read from and written to
/// safely from multiple threads.
#[derive(Default)]
pub struct AtomicMaterialBindGroupId(AtomicU32);
impl AtomicMaterialBindGroupId {
/// Stores a value atomically. Uses [`Ordering::Relaxed`] so there is zero guarantee of ordering
/// relative to other operations.
///
/// See also: [`AtomicU32::store`].
pub fn set(&self, id: MaterialBindGroupId) {
let id = if let Some(id) = id.0 {
NonZeroU32::from(id).get()
} else {
0
};
self.0.store(id, Ordering::Relaxed);
}
/// Loads a value atomically. Uses [`Ordering::Relaxed`] so there is zero guarantee of ordering
/// relative to other operations.
///
/// See also: [`AtomicU32::load`].
pub fn get(&self) -> MaterialBindGroupId {
MaterialBindGroupId(NonZeroU32::new(self.0.load(Ordering::Relaxed)).map(BindGroupId::from))
}
}
impl<T: Material> PreparedMaterial<T> {
pub fn get_bind_group_id(&self) -> MaterialBindGroupId {
MaterialBindGroupId(Some(self.bind_group.id()))
}
}