bevy/crates/bevy_asset/src/io/mod.rs
Carter Anderson 35073cf7aa
Multiple Asset Sources (#9885)
This adds support for **Multiple Asset Sources**. You can now register a
named `AssetSource`, which you can load assets from like you normally
would:

```rust
let shader: Handle<Shader> = asset_server.load("custom_source://path/to/shader.wgsl");
```

Notice that `AssetPath` now supports `some_source://` syntax. This can
now be accessed through the `asset_path.source()` accessor.

Asset source names _are not required_. If one is not specified, the
default asset source will be used:

```rust
let shader: Handle<Shader> = asset_server.load("path/to/shader.wgsl");
```

The behavior of the default asset source has not changed. Ex: the
`assets` folder is still the default.

As referenced in #9714

## Why?

**Multiple Asset Sources** enables a number of often-asked-for
scenarios:

* **Loading some assets from other locations on disk**: you could create
a `config` asset source that reads from the OS-default config folder
(not implemented in this PR)
* **Loading some assets from a remote server**: you could register a new
`remote` asset source that reads some assets from a remote http server
(not implemented in this PR)
* **Improved "Binary Embedded" Assets**: we can use this system for
"embedded-in-binary assets", which allows us to replace the old
`load_internal_asset!` approach, which couldn't support asset
processing, didn't support hot-reloading _well_, and didn't make
embedded assets accessible to the `AssetServer` (implemented in this pr)

## Adding New Asset Sources

An `AssetSource` is "just" a collection of `AssetReader`, `AssetWriter`,
and `AssetWatcher` entries. You can configure new asset sources like
this:

```rust
app.register_asset_source(
    "other",
    AssetSource::build()
        .with_reader(|| Box::new(FileAssetReader::new("other")))
    )
)
```

Note that `AssetSource` construction _must_ be repeatable, which is why
a closure is accepted.
`AssetSourceBuilder` supports `with_reader`, `with_writer`,
`with_watcher`, `with_processed_reader`, `with_processed_writer`, and
`with_processed_watcher`.

Note that the "asset source" system replaces the old "asset providers"
system.

## Processing Multiple Sources

The `AssetProcessor` now supports multiple asset sources! Processed
assets can refer to assets in other sources and everything "just works".
Each `AssetSource` defines an unprocessed and processed `AssetReader` /
`AssetWriter`.

Currently this is all or nothing for a given `AssetSource`. A given
source is either processed or it is not. Later we might want to add
support for "lazy asset processing", where an `AssetSource` (such as a
remote server) can be configured to only process assets that are
directly referenced by local assets (in order to save local disk space
and avoid doing extra work).

## A new `AssetSource`: `embedded`

One of the big features motivating **Multiple Asset Sources** was
improving our "embedded-in-binary" asset loading. To prove out the
**Multiple Asset Sources** implementation, I chose to build a new
`embedded` `AssetSource`, which replaces the old `load_interal_asset!`
system.

The old `load_internal_asset!` approach had a number of issues:

* The `AssetServer` was not aware of (or capable of loading) internal
assets.
* Because internal assets weren't visible to the `AssetServer`, they
could not be processed (or used by assets that are processed). This
would prevent things "preprocessing shaders that depend on built in Bevy
shaders", which is something we desperately need to start doing.
* Each "internal asset" needed a UUID to be defined in-code to reference
it. This was very manual and toilsome.

The new `embedded` `AssetSource` enables the following pattern:

```rust
// Called in `crates/bevy_pbr/src/render/mesh.rs`
embedded_asset!(app, "mesh.wgsl");

// later in the app
let shader: Handle<Shader> = asset_server.load("embedded://bevy_pbr/render/mesh.wgsl");
```

Notice that this always treats the crate name as the "root path", and it
trims out the `src` path for brevity. This is generally predictable, but
if you need to debug you can use the new `embedded_path!` macro to get a
`PathBuf` that matches the one used by `embedded_asset`.

You can also reference embedded assets in arbitrary assets, such as WGSL
shaders:

```rust
#import "embedded://bevy_pbr/render/mesh.wgsl"
```

This also makes `embedded` assets go through the "normal" asset
lifecycle. They are only loaded when they are actually used!

We are also discussing implicitly converting asset paths to/from shader
modules, so in the future (not in this PR) you might be able to load it
like this:

```rust
#import bevy_pbr::render::mesh::Vertex
```

Compare that to the old system!

```rust
pub const MESH_SHADER_HANDLE: Handle<Shader> = Handle::weak_from_u128(3252377289100772450);

load_internal_asset!(app, MESH_SHADER_HANDLE, "mesh.wgsl", Shader::from_wgsl);

// The mesh asset is the _only_ accessible via MESH_SHADER_HANDLE and _cannot_ be loaded via the AssetServer.
```

## Hot Reloading `embedded`

You can enable `embedded` hot reloading by enabling the
`embedded_watcher` cargo feature:

```
cargo run --features=embedded_watcher
```

## Improved Hot Reloading Workflow

First: the `filesystem_watcher` cargo feature has been renamed to
`file_watcher` for brevity (and to match the `FileAssetReader` naming
convention).

More importantly, hot asset reloading is no longer configured in-code by
default. If you enable any asset watcher feature (such as `file_watcher`
or `rust_source_watcher`), asset watching will be automatically enabled.

This removes the need to _also_ enable hot reloading in your app code.
That means you can replace this:

```rust
app.add_plugins(DefaultPlugins.set(AssetPlugin::default().watch_for_changes()))
```

with this:

```rust
app.add_plugins(DefaultPlugins)
```

If you want to hot reload assets in your app during development, just
run your app like this:

```
cargo run --features=file_watcher
```

This means you can use the same code for development and deployment! To
deploy an app, just don't include the watcher feature

```
cargo build --release
```

My intent is to move to this approach for pretty much all dev workflows.
In a future PR I would like to replace `AssetMode::ProcessedDev` with a
`runtime-processor` cargo feature. We could then group all common "dev"
cargo features under a single `dev` feature:

```sh
# this would enable file_watcher, embedded_watcher, runtime-processor, and more
cargo run --features=dev
```

## AssetMode

`AssetPlugin::Unprocessed`, `AssetPlugin::Processed`, and
`AssetPlugin::ProcessedDev` have been replaced with an `AssetMode` field
on `AssetPlugin`.

```rust
// before 
app.add_plugins(DefaultPlugins.set(AssetPlugin::Processed { /* fields here */ })

// after 
app.add_plugins(DefaultPlugins.set(AssetPlugin { mode: AssetMode::Processed, ..default() })
```

This aligns `AssetPlugin` with our other struct-like plugins. The old
"source" and "destination" `AssetProvider` fields in the enum variants
have been replaced by the "asset source" system. You no longer need to
configure the AssetPlugin to "point" to custom asset providers.

## AssetServerMode

To improve the implementation of **Multiple Asset Sources**,
`AssetServer` was made aware of whether or not it is using "processed"
or "unprocessed" assets. You can check that like this:

```rust
if asset_server.mode() == AssetServerMode::Processed {
    /* do something */
}
```

Note that this refactor should also prepare the way for building "one to
many processed output files", as it makes the server aware of whether it
is loading from processed or unprocessed sources. Meaning we can store
and read processed and unprocessed assets differently!

## AssetPath can now refer to folders

The "file only" restriction has been removed from `AssetPath`. The
`AssetServer::load_folder` API now accepts an `AssetPath` instead of a
`Path`, meaning you can load folders from other asset sources!

## Improved AssetPath Parsing

AssetPath parsing was reworked to support sources, improve error
messages, and to enable parsing with a single pass over the string.
`AssetPath::new` was replaced by `AssetPath::parse` and
`AssetPath::try_parse`.

## AssetWatcher broken out from AssetReader

`AssetReader` is no longer responsible for constructing `AssetWatcher`.
This has been moved to `AssetSourceBuilder`.


## Duplicate Event Debouncing

Asset V2 already debounced duplicate filesystem events, but this was
_input_ events. Multiple input event types can produce the same _output_
`AssetSourceEvent`. Now that we have `embedded_watcher`, which does
expensive file io on events, it made sense to debounce output events
too, so I added that! This will also benefit the AssetProcessor by
preventing integrity checks for duplicate events (and helps keep the
noise down in trace logs).

## Next Steps

* **Port Built-in Shaders**: Currently the primary (and essentially
only) user of `load_interal_asset` in Bevy's source code is "built-in
shaders". I chose not to do that in this PR for a few reasons:
1. We need to add the ability to pass shader defs in to shaders via meta
files. Some shaders (such as MESH_VIEW_TYPES) need to pass shader def
values in that are defined in code.
2. We need to revisit the current shader module naming system. I think
we _probably_ want to imply modules from source structure (at least by
default). Ideally in a way that can losslessly convert asset paths
to/from shader modules (to enable the asset system to resolve modules
using the asset server).
  3. I want to keep this change set minimal / get this merged first.
* **Deprecate `load_internal_asset`**: we can't do that until we do (1)
and (2)
* **Relative Asset Paths**: This PR significantly increases the need for
relative asset paths (which was already pretty high). Currently when
loading dependencies, it is assumed to be an absolute path, which means
if in an `AssetLoader` you call `context.load("some/path/image.png")` it
will assume that is the "default" asset source, _even if the current
asset is in a different asset source_. This will cause breakage for
AssetLoaders that are not designed to add the current source to whatever
paths are being used. AssetLoaders should generally not need to be aware
of the name of their current asset source, or need to think about the
"current asset source" generally. We should build apis that support
relative asset paths and then encourage using relative paths as much as
possible (both via api design and docs). Relative paths are also
important because they will allow developers to move folders around
(even across providers) without reprocessing, provided there is no path
breakage.
2023-10-13 23:17:32 +00:00

272 lines
9.5 KiB
Rust

#[cfg(target_os = "android")]
pub mod android;
pub mod embedded;
#[cfg(not(target_arch = "wasm32"))]
pub mod file;
pub mod gated;
pub mod memory;
pub mod processor_gated;
#[cfg(target_arch = "wasm32")]
pub mod wasm;
mod source;
pub use futures_lite::{AsyncReadExt, AsyncWriteExt};
pub use source::*;
use bevy_utils::BoxedFuture;
use futures_io::{AsyncRead, AsyncWrite};
use futures_lite::{ready, Stream};
use std::{
path::{Path, PathBuf},
pin::Pin,
task::Poll,
};
use thiserror::Error;
/// Errors that occur while loading assets.
#[derive(Error, Debug)]
pub enum AssetReaderError {
/// Path not found.
#[error("path not found: {0}")]
NotFound(PathBuf),
/// Encountered an I/O error while loading an asset.
#[error("encountered an io error while loading asset: {0}")]
Io(#[from] std::io::Error),
}
pub type Reader<'a> = dyn AsyncRead + Unpin + Send + Sync + 'a;
/// Performs read operations on an asset storage. [`AssetReader`] exposes a "virtual filesystem"
/// API, where asset bytes and asset metadata bytes are both stored and accessible for a given
/// `path`.
///
/// Also see [`AssetWriter`].
pub trait AssetReader: Send + Sync + 'static {
/// Returns a future to load the full file data at the provided path.
fn read<'a>(
&'a self,
path: &'a Path,
) -> BoxedFuture<'a, Result<Box<Reader<'a>>, AssetReaderError>>;
/// Returns a future to load the full file data at the provided path.
fn read_meta<'a>(
&'a self,
path: &'a Path,
) -> BoxedFuture<'a, Result<Box<Reader<'a>>, AssetReaderError>>;
/// Returns an iterator of directory entry names at the provided path.
fn read_directory<'a>(
&'a self,
path: &'a Path,
) -> BoxedFuture<'a, Result<Box<PathStream>, AssetReaderError>>;
/// Returns an iterator of directory entry names at the provided path.
fn is_directory<'a>(
&'a self,
path: &'a Path,
) -> BoxedFuture<'a, Result<bool, AssetReaderError>>;
/// Reads asset metadata bytes at the given `path` into a [`Vec<u8>`]. This is a convenience
/// function that wraps [`AssetReader::read_meta`] by default.
fn read_meta_bytes<'a>(
&'a self,
path: &'a Path,
) -> BoxedFuture<'a, Result<Vec<u8>, AssetReaderError>> {
Box::pin(async move {
let mut meta_reader = self.read_meta(path).await?;
let mut meta_bytes = Vec::new();
meta_reader.read_to_end(&mut meta_bytes).await?;
Ok(meta_bytes)
})
}
}
pub type Writer = dyn AsyncWrite + Unpin + Send + Sync;
pub type PathStream = dyn Stream<Item = PathBuf> + Unpin + Send;
/// Errors that occur while loading assets.
#[derive(Error, Debug)]
pub enum AssetWriterError {
/// Encountered an I/O error while loading an asset.
#[error("encountered an io error while loading asset: {0}")]
Io(#[from] std::io::Error),
}
/// Preforms write operations on an asset storage. [`AssetWriter`] exposes a "virtual filesystem"
/// API, where asset bytes and asset metadata bytes are both stored and accessible for a given
/// `path`.
///
/// Also see [`AssetReader`].
pub trait AssetWriter: Send + Sync + 'static {
/// Writes the full asset bytes at the provided path.
fn write<'a>(
&'a self,
path: &'a Path,
) -> BoxedFuture<'a, Result<Box<Writer>, AssetWriterError>>;
/// Writes the full asset meta bytes at the provided path.
/// This _should not_ include storage specific extensions like `.meta`.
fn write_meta<'a>(
&'a self,
path: &'a Path,
) -> BoxedFuture<'a, Result<Box<Writer>, AssetWriterError>>;
/// Removes the asset stored at the given path.
fn remove<'a>(&'a self, path: &'a Path) -> BoxedFuture<'a, Result<(), AssetWriterError>>;
/// Removes the asset meta stored at the given path.
/// This _should not_ include storage specific extensions like `.meta`.
fn remove_meta<'a>(&'a self, path: &'a Path) -> BoxedFuture<'a, Result<(), AssetWriterError>>;
/// Renames the asset at `old_path` to `new_path`
fn rename<'a>(
&'a self,
old_path: &'a Path,
new_path: &'a Path,
) -> BoxedFuture<'a, Result<(), AssetWriterError>>;
/// Renames the asset meta for the asset at `old_path` to `new_path`.
/// This _should not_ include storage specific extensions like `.meta`.
fn rename_meta<'a>(
&'a self,
old_path: &'a Path,
new_path: &'a Path,
) -> BoxedFuture<'a, Result<(), AssetWriterError>>;
/// Removes the directory at the given path, including all assets _and_ directories in that directory.
fn remove_directory<'a>(
&'a self,
path: &'a Path,
) -> BoxedFuture<'a, Result<(), AssetWriterError>>;
/// Removes the directory at the given path, but only if it is completely empty. This will return an error if the
/// directory is not empty.
fn remove_empty_directory<'a>(
&'a self,
path: &'a Path,
) -> BoxedFuture<'a, Result<(), AssetWriterError>>;
/// Removes all assets (and directories) in this directory, resulting in an empty directory.
fn remove_assets_in_directory<'a>(
&'a self,
path: &'a Path,
) -> BoxedFuture<'a, Result<(), AssetWriterError>>;
/// Writes the asset `bytes` to the given `path`.
fn write_bytes<'a>(
&'a self,
path: &'a Path,
bytes: &'a [u8],
) -> BoxedFuture<'a, Result<(), AssetWriterError>> {
Box::pin(async move {
let mut writer = self.write(path).await?;
writer.write_all(bytes).await?;
writer.flush().await?;
Ok(())
})
}
/// Writes the asset meta `bytes` to the given `path`.
fn write_meta_bytes<'a>(
&'a self,
path: &'a Path,
bytes: &'a [u8],
) -> BoxedFuture<'a, Result<(), AssetWriterError>> {
Box::pin(async move {
let mut meta_writer = self.write_meta(path).await?;
meta_writer.write_all(bytes).await?;
meta_writer.flush().await?;
Ok(())
})
}
}
/// An "asset source change event" that occurs whenever asset (or asset metadata) is created/added/removed
#[derive(Clone, Debug, PartialEq, Eq)]
pub enum AssetSourceEvent {
/// An asset at this path was added.
AddedAsset(PathBuf),
/// An asset at this path was modified.
ModifiedAsset(PathBuf),
/// An asset at this path was removed.
RemovedAsset(PathBuf),
/// An asset at this path was renamed.
RenamedAsset { old: PathBuf, new: PathBuf },
/// Asset metadata at this path was added.
AddedMeta(PathBuf),
/// Asset metadata at this path was modified.
ModifiedMeta(PathBuf),
/// Asset metadata at this path was removed.
RemovedMeta(PathBuf),
/// Asset metadata at this path was renamed.
RenamedMeta { old: PathBuf, new: PathBuf },
/// A folder at the given path was added.
AddedFolder(PathBuf),
/// A folder at the given path was removed.
RemovedFolder(PathBuf),
/// A folder at the given path was renamed.
RenamedFolder { old: PathBuf, new: PathBuf },
/// Something of unknown type was removed. It is the job of the event handler to determine the type.
/// This exists because notify-rs produces "untyped" rename events without destination paths for unwatched folders, so we can't determine the type of
/// the rename.
RemovedUnknown {
/// The path of the removed asset or folder (undetermined). This could be an asset path or a folder. This will not be a "meta file" path.
path: PathBuf,
/// This field is only relevant if `path` is determined to be an asset path (and therefore not a folder). If this field is `true`,
/// then this event corresponds to a meta removal (not an asset removal) . If `false`, then this event corresponds to an asset removal
/// (not a meta removal).
is_meta: bool,
},
}
/// A handle to an "asset watcher" process, that will listen for and emit [`AssetSourceEvent`] values for as long as
/// [`AssetWatcher`] has not been dropped.
pub trait AssetWatcher: Send + Sync + 'static {}
/// An [`AsyncRead`] implementation capable of reading a [`Vec<u8>`].
pub struct VecReader {
bytes: Vec<u8>,
bytes_read: usize,
}
impl VecReader {
/// Create a new [`VecReader`] for `bytes`.
pub fn new(bytes: Vec<u8>) -> Self {
Self {
bytes_read: 0,
bytes,
}
}
}
impl AsyncRead for VecReader {
fn poll_read(
mut self: std::pin::Pin<&mut Self>,
cx: &mut std::task::Context<'_>,
buf: &mut [u8],
) -> std::task::Poll<futures_io::Result<usize>> {
if self.bytes_read >= self.bytes.len() {
Poll::Ready(Ok(0))
} else {
let n = ready!(Pin::new(&mut &self.bytes[self.bytes_read..]).poll_read(cx, buf))?;
self.bytes_read += n;
Poll::Ready(Ok(n))
}
}
}
/// Appends `.meta` to the given path.
pub(crate) fn get_meta_path(path: &Path) -> PathBuf {
let mut meta_path = path.to_path_buf();
let mut extension = path
.extension()
.expect("asset paths must have extensions")
.to_os_string();
extension.push(".meta");
meta_path.set_extension(extension);
meta_path
}
/// A [`PathBuf`] [`Stream`] implementation that immediately returns nothing.
struct EmptyPathStream;
impl Stream for EmptyPathStream {
type Item = PathBuf;
fn poll_next(
self: Pin<&mut Self>,
_cx: &mut std::task::Context<'_>,
) -> Poll<Option<Self::Item>> {
Poll::Ready(None)
}
}