mirror of
https://github.com/bevyengine/bevy
synced 2025-01-25 03:15:20 +00:00
33c7a2251e
# Objective - Part of #11590 - Fix `unsafe_op_in_unsafe_fn` for trivial cases in bevy_ecs ## Solution Fix `unsafe_op_in_unsafe_fn` in bevy_ecs for trivial cases, i.e., add an `unsafe` block when the safety comment already exists or add a comment like "The invariants are uphold by the caller". --------- Co-authored-by: James Liu <contact@jamessliu.com>
356 lines
14 KiB
Rust
356 lines
14 KiB
Rust
//! Definitions for [`Component`] reflection.
|
||
//! This allows inserting, updating, removing and generally interacting with components
|
||
//! whose types are only known at runtime.
|
||
//!
|
||
//! This module exports two types: [`ReflectComponentFns`] and [`ReflectComponent`].
|
||
//!
|
||
//! # Architecture
|
||
//!
|
||
//! [`ReflectComponent`] wraps a [`ReflectComponentFns`]. In fact, each method on
|
||
//! [`ReflectComponent`] wraps a call to a function pointer field in `ReflectComponentFns`.
|
||
//!
|
||
//! ## Who creates `ReflectComponent`s?
|
||
//!
|
||
//! When a user adds the `#[reflect(Component)]` attribute to their `#[derive(Reflect)]`
|
||
//! type, it tells the derive macro for `Reflect` to add the following single line to its
|
||
//! [`get_type_registration`] method (see the relevant code[^1]).
|
||
//!
|
||
//! ```
|
||
//! # use bevy_reflect::{FromType, Reflect};
|
||
//! # use bevy_ecs::prelude::{ReflectComponent, Component};
|
||
//! # #[derive(Default, Reflect, Component)]
|
||
//! # struct A;
|
||
//! # impl A {
|
||
//! # fn foo() {
|
||
//! # let mut registration = bevy_reflect::TypeRegistration::of::<A>();
|
||
//! registration.insert::<ReflectComponent>(FromType::<Self>::from_type());
|
||
//! # }
|
||
//! # }
|
||
//! ```
|
||
//!
|
||
//! This line adds a `ReflectComponent` to the registration data for the type in question.
|
||
//! The user can access the `ReflectComponent` for type `T` through the type registry,
|
||
//! as per the `trait_reflection.rs` example.
|
||
//!
|
||
//! The `FromType::<Self>::from_type()` in the previous line calls the `FromType<C>`
|
||
//! implementation of `ReflectComponent`.
|
||
//!
|
||
//! The `FromType<C>` impl creates a function per field of [`ReflectComponentFns`].
|
||
//! In those functions, we call generic methods on [`World`] and [`EntityWorldMut`].
|
||
//!
|
||
//! The result is a `ReflectComponent` completely independent of `C`, yet capable
|
||
//! of using generic ECS methods such as `entity.get::<C>()` to get `&dyn Reflect`
|
||
//! with underlying type `C`, without the `C` appearing in the type signature.
|
||
//!
|
||
//! ## A note on code generation
|
||
//!
|
||
//! A downside of this approach is that monomorphized code (ie: concrete code
|
||
//! for generics) is generated **unconditionally**, regardless of whether it ends
|
||
//! up used or not.
|
||
//!
|
||
//! Adding `N` fields on `ReflectComponentFns` will generate `N × M` additional
|
||
//! functions, where `M` is how many types derive `#[reflect(Component)]`.
|
||
//!
|
||
//! Those functions will increase the size of the final app binary.
|
||
//!
|
||
//! [^1]: `crates/bevy_reflect/bevy_reflect_derive/src/registration.rs`
|
||
//!
|
||
//! [`get_type_registration`]: bevy_reflect::GetTypeRegistration::get_type_registration
|
||
|
||
use std::any::TypeId;
|
||
|
||
use super::ReflectFromWorld;
|
||
use crate::{
|
||
change_detection::Mut,
|
||
component::Component,
|
||
entity::Entity,
|
||
world::{unsafe_world_cell::UnsafeEntityCell, EntityRef, EntityWorldMut, World},
|
||
};
|
||
use bevy_reflect::{FromReflect, FromType, Reflect, TypeRegistry};
|
||
|
||
/// A struct used to operate on reflected [`Component`] trait of a type.
|
||
///
|
||
/// A [`ReflectComponent`] for type `T` can be obtained via
|
||
/// [`bevy_reflect::TypeRegistration::data`].
|
||
#[derive(Clone)]
|
||
pub struct ReflectComponent(ReflectComponentFns);
|
||
|
||
/// The raw function pointers needed to make up a [`ReflectComponent`].
|
||
///
|
||
/// This is used when creating custom implementations of [`ReflectComponent`] with
|
||
/// [`ReflectComponent::new()`].
|
||
///
|
||
/// > **Note:**
|
||
/// > Creating custom implementations of [`ReflectComponent`] is an advanced feature that most users
|
||
/// > will not need.
|
||
/// > Usually a [`ReflectComponent`] is created for a type by deriving [`Reflect`]
|
||
/// > and adding the `#[reflect(Component)]` attribute.
|
||
/// > After adding the component to the [`TypeRegistry`],
|
||
/// > its [`ReflectComponent`] can then be retrieved when needed.
|
||
///
|
||
/// Creating a custom [`ReflectComponent`] may be useful if you need to create new component types
|
||
/// at runtime, for example, for scripting implementations.
|
||
///
|
||
/// By creating a custom [`ReflectComponent`] and inserting it into a type's
|
||
/// [`TypeRegistration`][bevy_reflect::TypeRegistration],
|
||
/// you can modify the way that reflected components of that type will be inserted into the Bevy
|
||
/// world.
|
||
#[derive(Clone)]
|
||
pub struct ReflectComponentFns {
|
||
/// Function pointer implementing [`ReflectComponent::insert()`].
|
||
pub insert: fn(&mut EntityWorldMut, &dyn Reflect, &TypeRegistry),
|
||
/// Function pointer implementing [`ReflectComponent::apply()`].
|
||
pub apply: fn(&mut EntityWorldMut, &dyn Reflect),
|
||
/// Function pointer implementing [`ReflectComponent::apply_or_insert()`].
|
||
pub apply_or_insert: fn(&mut EntityWorldMut, &dyn Reflect, &TypeRegistry),
|
||
/// Function pointer implementing [`ReflectComponent::remove()`].
|
||
pub remove: fn(&mut EntityWorldMut),
|
||
/// Function pointer implementing [`ReflectComponent::contains()`].
|
||
pub contains: fn(EntityRef) -> bool,
|
||
/// Function pointer implementing [`ReflectComponent::reflect()`].
|
||
pub reflect: fn(EntityRef) -> Option<&dyn Reflect>,
|
||
/// Function pointer implementing [`ReflectComponent::reflect_mut()`].
|
||
pub reflect_mut: for<'a> fn(&'a mut EntityWorldMut<'_>) -> Option<Mut<'a, dyn Reflect>>,
|
||
/// Function pointer implementing [`ReflectComponent::reflect_unchecked_mut()`].
|
||
///
|
||
/// # Safety
|
||
/// The function may only be called with an [`UnsafeEntityCell`] that can be used to mutably access the relevant component on the given entity.
|
||
pub reflect_unchecked_mut: unsafe fn(UnsafeEntityCell<'_>) -> Option<Mut<'_, dyn Reflect>>,
|
||
/// Function pointer implementing [`ReflectComponent::copy()`].
|
||
pub copy: fn(&World, &mut World, Entity, Entity, &TypeRegistry),
|
||
}
|
||
|
||
impl ReflectComponentFns {
|
||
/// Get the default set of [`ReflectComponentFns`] for a specific component type using its
|
||
/// [`FromType`] implementation.
|
||
///
|
||
/// This is useful if you want to start with the default implementation before overriding some
|
||
/// of the functions to create a custom implementation.
|
||
pub fn new<T: Component + Reflect + FromReflect>() -> Self {
|
||
<ReflectComponent as FromType<T>>::from_type().0
|
||
}
|
||
}
|
||
|
||
impl ReflectComponent {
|
||
/// Insert a reflected [`Component`] into the entity like [`insert()`](EntityWorldMut::insert).
|
||
pub fn insert(
|
||
&self,
|
||
entity: &mut EntityWorldMut,
|
||
component: &dyn Reflect,
|
||
registry: &TypeRegistry,
|
||
) {
|
||
(self.0.insert)(entity, component, registry);
|
||
}
|
||
|
||
/// Uses reflection to set the value of this [`Component`] type in the entity to the given value.
|
||
///
|
||
/// # Panics
|
||
///
|
||
/// Panics if there is no [`Component`] of the given type.
|
||
pub fn apply(&self, entity: &mut EntityWorldMut, component: &dyn Reflect) {
|
||
(self.0.apply)(entity, component);
|
||
}
|
||
|
||
/// Uses reflection to set the value of this [`Component`] type in the entity to the given value or insert a new one if it does not exist.
|
||
pub fn apply_or_insert(
|
||
&self,
|
||
entity: &mut EntityWorldMut,
|
||
component: &dyn Reflect,
|
||
registry: &TypeRegistry,
|
||
) {
|
||
(self.0.apply_or_insert)(entity, component, registry);
|
||
}
|
||
|
||
/// Removes this [`Component`] type from the entity. Does nothing if it doesn't exist.
|
||
pub fn remove(&self, entity: &mut EntityWorldMut) {
|
||
(self.0.remove)(entity);
|
||
}
|
||
|
||
/// Returns whether entity contains this [`Component`]
|
||
pub fn contains(&self, entity: EntityRef) -> bool {
|
||
(self.0.contains)(entity)
|
||
}
|
||
|
||
/// Gets the value of this [`Component`] type from the entity as a reflected reference.
|
||
pub fn reflect<'a>(&self, entity: EntityRef<'a>) -> Option<&'a dyn Reflect> {
|
||
(self.0.reflect)(entity)
|
||
}
|
||
|
||
/// Gets the value of this [`Component`] type from the entity as a mutable reflected reference.
|
||
pub fn reflect_mut<'a>(
|
||
&self,
|
||
entity: &'a mut EntityWorldMut<'_>,
|
||
) -> Option<Mut<'a, dyn Reflect>> {
|
||
(self.0.reflect_mut)(entity)
|
||
}
|
||
|
||
/// # Safety
|
||
/// This method does not prevent you from having two mutable pointers to the same data,
|
||
/// violating Rust's aliasing rules. To avoid this:
|
||
/// * Only call this method with a [`UnsafeEntityCell`] that may be used to mutably access the component on the entity `entity`
|
||
/// * Don't call this method more than once in the same scope for a given [`Component`].
|
||
pub unsafe fn reflect_unchecked_mut<'a>(
|
||
&self,
|
||
entity: UnsafeEntityCell<'a>,
|
||
) -> Option<Mut<'a, dyn Reflect>> {
|
||
// SAFETY: safety requirements deferred to caller
|
||
unsafe { (self.0.reflect_unchecked_mut)(entity) }
|
||
}
|
||
|
||
/// Gets the value of this [`Component`] type from entity from `source_world` and [applies](Self::apply()) it to the value of this [`Component`] type in entity in `destination_world`.
|
||
///
|
||
/// # Panics
|
||
///
|
||
/// Panics if there is no [`Component`] of the given type or either entity does not exist.
|
||
pub fn copy(
|
||
&self,
|
||
source_world: &World,
|
||
destination_world: &mut World,
|
||
source_entity: Entity,
|
||
destination_entity: Entity,
|
||
registry: &TypeRegistry,
|
||
) {
|
||
(self.0.copy)(
|
||
source_world,
|
||
destination_world,
|
||
source_entity,
|
||
destination_entity,
|
||
registry,
|
||
);
|
||
}
|
||
|
||
/// Create a custom implementation of [`ReflectComponent`].
|
||
///
|
||
/// This is an advanced feature,
|
||
/// useful for scripting implementations,
|
||
/// that should not be used by most users
|
||
/// unless you know what you are doing.
|
||
///
|
||
/// Usually you should derive [`Reflect`] and add the `#[reflect(Component)]` component
|
||
/// to generate a [`ReflectComponent`] implementation automatically.
|
||
///
|
||
/// See [`ReflectComponentFns`] for more information.
|
||
pub fn new(fns: ReflectComponentFns) -> Self {
|
||
Self(fns)
|
||
}
|
||
|
||
/// The underlying function pointers implementing methods on `ReflectComponent`.
|
||
///
|
||
/// This is useful when you want to keep track locally of an individual
|
||
/// function pointer.
|
||
///
|
||
/// Calling [`TypeRegistry::get`] followed by
|
||
/// [`TypeRegistration::data::<ReflectComponent>`] can be costly if done several
|
||
/// times per frame. Consider cloning [`ReflectComponent`] and keeping it
|
||
/// between frames, cloning a `ReflectComponent` is very cheap.
|
||
///
|
||
/// If you only need a subset of the methods on `ReflectComponent`,
|
||
/// use `fn_pointers` to get the underlying [`ReflectComponentFns`]
|
||
/// and copy the subset of function pointers you care about.
|
||
///
|
||
/// [`TypeRegistration::data::<ReflectComponent>`]: bevy_reflect::TypeRegistration::data
|
||
/// [`TypeRegistry::get`]: bevy_reflect::TypeRegistry::get
|
||
pub fn fn_pointers(&self) -> &ReflectComponentFns {
|
||
&self.0
|
||
}
|
||
}
|
||
|
||
impl<C: Component + Reflect + FromReflect> FromType<C> for ReflectComponent {
|
||
fn from_type() -> Self {
|
||
ReflectComponent(ReflectComponentFns {
|
||
insert: |entity, reflected_component, registry| {
|
||
let component = entity.world_scope(|world| {
|
||
from_reflect_or_world::<C>(reflected_component, world, registry)
|
||
});
|
||
entity.insert(component);
|
||
},
|
||
apply: |entity, reflected_component| {
|
||
let mut component = entity.get_mut::<C>().unwrap();
|
||
component.apply(reflected_component);
|
||
},
|
||
apply_or_insert: |entity, reflected_component, registry| {
|
||
if let Some(mut component) = entity.get_mut::<C>() {
|
||
component.apply(reflected_component);
|
||
} else {
|
||
let component = entity.world_scope(|world| {
|
||
from_reflect_or_world::<C>(reflected_component, world, registry)
|
||
});
|
||
entity.insert(component);
|
||
}
|
||
},
|
||
remove: |entity| {
|
||
entity.remove::<C>();
|
||
},
|
||
contains: |entity| entity.contains::<C>(),
|
||
copy: |source_world, destination_world, source_entity, destination_entity, registry| {
|
||
let source_component = source_world.get::<C>(source_entity).unwrap();
|
||
let destination_component =
|
||
from_reflect_or_world::<C>(source_component, destination_world, registry);
|
||
destination_world
|
||
.entity_mut(destination_entity)
|
||
.insert(destination_component);
|
||
},
|
||
reflect: |entity| entity.get::<C>().map(|c| c as &dyn Reflect),
|
||
reflect_mut: |entity| {
|
||
entity.get_mut::<C>().map(|c| Mut {
|
||
value: c.value as &mut dyn Reflect,
|
||
ticks: c.ticks,
|
||
})
|
||
},
|
||
reflect_unchecked_mut: |entity| {
|
||
// SAFETY: reflect_unchecked_mut is an unsafe function pointer used by
|
||
// `reflect_unchecked_mut` which must be called with an UnsafeEntityCell with access to the component `C` on the `entity`
|
||
unsafe {
|
||
entity.get_mut::<C>().map(|c| Mut {
|
||
value: c.value as &mut dyn Reflect,
|
||
ticks: c.ticks,
|
||
})
|
||
}
|
||
},
|
||
})
|
||
}
|
||
}
|
||
|
||
/// Creates a `T` from a `&dyn Reflect`.
|
||
///
|
||
/// The first approach uses `T`'s implementation of `FromReflect`.
|
||
/// If this fails, it falls back to default-initializing a new instance of `T` using its
|
||
/// `ReflectFromWorld` data from the `world`'s `AppTypeRegistry` and `apply`ing the
|
||
/// `&dyn Reflect` on it.
|
||
///
|
||
/// Panics if both approaches fail.
|
||
fn from_reflect_or_world<T: FromReflect>(
|
||
reflected: &dyn Reflect,
|
||
world: &mut World,
|
||
registry: &TypeRegistry,
|
||
) -> T {
|
||
if let Some(value) = T::from_reflect(reflected) {
|
||
return value;
|
||
}
|
||
|
||
// Clone the `ReflectFromWorld` because it's cheap and "frees"
|
||
// the borrow of `world` so that it can be passed to `from_world`.
|
||
let Some(reflect_from_world) = registry.get_type_data::<ReflectFromWorld>(TypeId::of::<T>())
|
||
else {
|
||
panic!(
|
||
"`FromReflect` failed and no `ReflectFromWorld` registration found for `{}`",
|
||
// FIXME: once we have unique reflect, use `TypePath`.
|
||
std::any::type_name::<T>(),
|
||
);
|
||
};
|
||
|
||
let Ok(mut value) = reflect_from_world
|
||
.from_world(world)
|
||
.into_any()
|
||
.downcast::<T>()
|
||
else {
|
||
panic!(
|
||
"the `ReflectFromWorld` registration for `{}` produced a value of a different type",
|
||
// FIXME: once we have unique reflect, use `TypePath`.
|
||
std::any::type_name::<T>(),
|
||
);
|
||
};
|
||
|
||
value.apply(reflected);
|
||
*value
|
||
}
|