bevy/crates/bevy_ecs/src/system/system_param.rs
JoJoJet 8ca3d0462c Allow SystemParams with private fields (#7056)
# Objective

- Fix #4200

Currently, `#[derive(SystemParam)]` publicly exposes each field type, which makes it impossible to encapsulate private fields.

## Solution

Previously, the fields were leaked because they were used as an input generic type to the macro-generated `SystemParam::State` struct. That type has been changed to store its state in a field with a specific type, instead of a generic type.

---

## Changelog

- Fixed a bug that caused `#[derive(SystemParam)]` to leak the types of private fields.
2023-01-04 23:25:36 +00:00

1818 lines
56 KiB
Rust

pub use crate::change_detection::{NonSendMut, ResMut};
use crate::{
archetype::{Archetype, Archetypes},
bundle::Bundles,
change_detection::Ticks,
component::{Component, ComponentId, ComponentTicks, Components, Tick},
entity::{Entities, Entity},
query::{
Access, FilteredAccess, FilteredAccessSet, QueryState, ReadOnlyWorldQuery, WorldQuery,
},
system::{CommandQueue, Commands, Query, SystemMeta},
world::{FromWorld, World},
};
pub use bevy_ecs_macros::Resource;
pub use bevy_ecs_macros::SystemParam;
use bevy_ecs_macros::{all_tuples, impl_param_set};
use bevy_ptr::UnsafeCellDeref;
use bevy_utils::synccell::SyncCell;
use std::{
borrow::Cow,
fmt::Debug,
marker::PhantomData,
ops::{Deref, DerefMut},
};
/// A parameter that can be used in a [`System`](super::System).
///
/// # Derive
///
/// This trait can be derived with the [`derive@super::SystemParam`] macro.
/// This macro only works if each field on the derived struct implements [`SystemParam`].
/// Note: There are additional requirements on the field types.
/// See the *Generic `SystemParam`s* section for details and workarounds of the probable
/// cause if this derive causes an error to be emitted.
///
/// Derived `SystemParam` structs may have two lifetimes: `'w` for data stored in the [`World`],
/// and `'s` for data stored in the parameter's state.
///
/// ## Attributes
///
/// `#[system_param(ignore)]`:
/// Can be added to any field in the struct. Fields decorated with this attribute
/// will be created with the default value upon realisation.
/// This is most useful for `PhantomData` fields, such as markers for generic types.
///
/// # Example
///
/// ```
/// # use bevy_ecs::prelude::*;
/// # #[derive(Resource)]
/// # struct SomeResource;
/// use std::marker::PhantomData;
/// use bevy_ecs::system::SystemParam;
///
/// #[derive(SystemParam)]
/// struct MyParam<'w, Marker: 'static> {
/// foo: Res<'w, SomeResource>,
/// #[system_param(ignore)]
/// marker: PhantomData<Marker>,
/// }
///
/// fn my_system<T: 'static>(param: MyParam<T>) {
/// // Access the resource through `param.foo`
/// }
///
/// # bevy_ecs::system::assert_is_system(my_system::<()>);
/// ```
///
/// # Generic `SystemParam`s
///
/// When using the derive macro, you may see an error in the form of:
///
/// ```text
/// expected ... [ParamType]
/// found associated type `<<[ParamType] as SystemParam>::State as SystemParamState>::Item<'_, '_>`
/// ```
/// where `[ParamType]` is the type of one of your fields.
/// To solve this error, you can wrap the field of type `[ParamType]` with [`StaticSystemParam`]
/// (i.e. `StaticSystemParam<[ParamType]>`).
///
/// ## Details
///
/// The derive macro requires that the [`SystemParam`] implementation of
/// each field `F`'s [`State`](`SystemParam::State`)'s [`Item`](`SystemParamState::Item`) is itself `F`
/// (ignoring lifetimes for simplicity).
/// This assumption is due to type inference reasons, so that the derived [`SystemParam`] can be
/// used as an argument to a function system.
/// If the compiler cannot validate this property for `[ParamType]`, it will error in the form shown above.
///
/// This will most commonly occur when working with `SystemParam`s generically, as the requirement
/// has not been proven to the compiler.
///
/// # `!Sync` Resources
/// A `!Sync` type cannot implement `Resource`. However, it is possible to wrap a `Send` but not `Sync`
/// type in [`SyncCell`] or the currently unstable [`Exclusive`] to make it `Sync`. This forces only
/// having mutable access (`&mut T` only, never `&T`), but makes it safe to reference across multiple
/// threads.
///
/// This will fail to compile since `RefCell` is `!Sync`.
/// ```compile_fail
/// # use std::cell::RefCell;
/// # use bevy_ecs::system::Resource;
///
/// #[derive(Resource)]
/// struct NotSync {
/// counter: RefCell<usize>,
/// }
/// ```
///
/// This will compile since the `RefCell` is wrapped with `SyncCell`.
/// ```
/// # use std::cell::RefCell;
/// # use bevy_ecs::system::Resource;
/// use bevy_utils::synccell::SyncCell;
///
/// #[derive(Resource)]
/// struct ActuallySync {
/// counter: SyncCell<RefCell<usize>>,
/// }
/// ```
///
/// [`SyncCell`]: bevy_utils::synccell::SyncCell
/// [`Exclusive`]: https://doc.rust-lang.org/nightly/std/sync/struct.Exclusive.html
pub trait SystemParam: Sized {
type State: SystemParamState;
}
pub type SystemParamItem<'w, 's, P> = <<P as SystemParam>::State as SystemParamState>::Item<'w, 's>;
/// The state of a [`SystemParam`].
///
/// # Safety
///
/// It is the implementor's responsibility to ensure `system_meta` is populated with the _exact_
/// [`World`] access used by the [`SystemParamState`].
/// Additionally, it is the implementor's responsibility to ensure there is no
/// conflicting access across all [`SystemParam`]'s.
pub unsafe trait SystemParamState: Send + Sync + 'static {
fn init(world: &mut World, system_meta: &mut SystemMeta) -> Self;
#[inline]
fn new_archetype(&mut self, _archetype: &Archetype, _system_meta: &mut SystemMeta) {}
#[inline]
#[allow(unused_variables)]
fn apply(&mut self, system_meta: &SystemMeta, _world: &mut World) {}
type Item<'world, 'state>: SystemParam<State = Self>;
/// # Safety
///
/// This call might access any of the input parameters in an unsafe way. Make sure the data
/// access is safe in the context of the system scheduler.
unsafe fn get_param<'world, 'state>(
state: &'state mut Self,
system_meta: &SystemMeta,
world: &'world World,
change_tick: u32,
) -> Self::Item<'world, 'state>;
}
/// A [`SystemParam`] that only reads a given [`World`].
///
/// # Safety
/// This must only be implemented for [`SystemParam`] impls that exclusively read the World passed in to [`SystemParamState::get_param`]
pub unsafe trait ReadOnlySystemParam: SystemParam {}
impl<'w, 's, Q: WorldQuery + 'static, F: ReadOnlyWorldQuery + 'static> SystemParam
for Query<'w, 's, Q, F>
{
type State = QueryState<Q, F>;
}
// SAFETY: QueryState is constrained to read-only fetches, so it only reads World.
unsafe impl<'w, 's, Q: ReadOnlyWorldQuery + 'static, F: ReadOnlyWorldQuery + 'static>
ReadOnlySystemParam for Query<'w, 's, Q, F>
{
}
// SAFETY: Relevant query ComponentId and ArchetypeComponentId access is applied to SystemMeta. If
// this QueryState conflicts with any prior access, a panic will occur.
unsafe impl<Q: WorldQuery + 'static, F: ReadOnlyWorldQuery + 'static> SystemParamState
for QueryState<Q, F>
{
type Item<'w, 's> = Query<'w, 's, Q, F>;
fn init(world: &mut World, system_meta: &mut SystemMeta) -> Self {
let state = QueryState::new(world);
assert_component_access_compatibility(
&system_meta.name,
std::any::type_name::<Q>(),
std::any::type_name::<F>(),
&system_meta.component_access_set,
&state.component_access,
world,
);
system_meta
.component_access_set
.add(state.component_access.clone());
system_meta
.archetype_component_access
.extend(&state.archetype_component_access);
state
}
fn new_archetype(&mut self, archetype: &Archetype, system_meta: &mut SystemMeta) {
self.new_archetype(archetype);
system_meta
.archetype_component_access
.extend(&self.archetype_component_access);
}
#[inline]
unsafe fn get_param<'w, 's>(
state: &'s mut Self,
system_meta: &SystemMeta,
world: &'w World,
change_tick: u32,
) -> Self::Item<'w, 's> {
Query::new(world, state, system_meta.last_change_tick, change_tick)
}
}
fn assert_component_access_compatibility(
system_name: &str,
query_type: &'static str,
filter_type: &'static str,
system_access: &FilteredAccessSet<ComponentId>,
current: &FilteredAccess<ComponentId>,
world: &World,
) {
let conflicts = system_access.get_conflicts_single(current);
if conflicts.is_empty() {
return;
}
let conflicting_components = conflicts
.into_iter()
.map(|component_id| world.components.get_info(component_id).unwrap().name())
.collect::<Vec<&str>>();
let accesses = conflicting_components.join(", ");
panic!("error[B0001]: Query<{}, {}> in system {} accesses component(s) {} in a way that conflicts with a previous system parameter. Consider using `Without<T>` to create disjoint Queries or merging conflicting Queries into a `ParamSet`.",
query_type, filter_type, system_name, accesses);
}
/// A collection of potentially conflicting [`SystemParam`]s allowed by disjoint access.
///
/// Allows systems to safely access and interact with up to 8 mutually exclusive [`SystemParam`]s, such as
/// two queries that reference the same mutable data or an event reader and writer of the same type.
///
/// Each individual [`SystemParam`] can be accessed by using the functions `p0()`, `p1()`, ..., `p7()`,
/// according to the order they are defined in the `ParamSet`. This ensures that there's either
/// only one mutable reference to a parameter at a time or any number of immutable references.
///
/// # Examples
///
/// The following system mutably accesses the same component two times,
/// which is not allowed due to rust's mutability rules.
///
/// ```should_panic
/// # use bevy_ecs::prelude::*;
/// #
/// # #[derive(Component)]
/// # struct Health;
/// #
/// # #[derive(Component)]
/// # struct Enemy;
/// #
/// # #[derive(Component)]
/// # struct Ally;
/// #
/// // This will panic at runtime when the system gets initialized.
/// fn bad_system(
/// mut enemies: Query<&mut Health, With<Enemy>>,
/// mut allies: Query<&mut Health, With<Ally>>,
/// ) {
/// // ...
/// }
/// #
/// # let mut bad_system_system = bevy_ecs::system::IntoSystem::into_system(bad_system);
/// # let mut world = World::new();
/// # bad_system_system.initialize(&mut world);
/// # bad_system_system.run((), &mut world);
/// ```
///
/// Conflicing `SystemParam`s like these can be placed in a `ParamSet`,
/// which leverages the borrow checker to ensure that only one of the contained parameters are accessed at a given time.
///
/// ```
/// # use bevy_ecs::prelude::*;
/// #
/// # #[derive(Component)]
/// # struct Health;
/// #
/// # #[derive(Component)]
/// # struct Enemy;
/// #
/// # #[derive(Component)]
/// # struct Ally;
/// #
/// // Given the following system
/// fn fancy_system(
/// mut set: ParamSet<(
/// Query<&mut Health, With<Enemy>>,
/// Query<&mut Health, With<Ally>>,
/// )>
/// ) {
/// // This will access the first `SystemParam`.
/// for mut health in set.p0().iter_mut() {
/// // Do your fancy stuff here...
/// }
///
/// // The second `SystemParam`.
/// // This would fail to compile if the previous parameter was still borrowed.
/// for mut health in set.p1().iter_mut() {
/// // Do even fancier stuff here...
/// }
/// }
/// # bevy_ecs::system::assert_is_system(fancy_system);
/// ```
///
/// Of course, `ParamSet`s can be used with any kind of `SystemParam`, not just [queries](Query).
///
/// ```
/// # use bevy_ecs::prelude::*;
/// #
/// # struct MyEvent;
/// # impl MyEvent {
/// # pub fn new() -> Self { Self }
/// # }
/// fn event_system(
/// mut set: ParamSet<(
/// // `EventReader`s and `EventWriter`s conflict with each other,
/// // since they both access the event queue resource for `MyEvent`.
/// EventReader<MyEvent>,
/// EventWriter<MyEvent>,
/// // `&World` reads the entire world, so a `ParamSet` is the only way
/// // that it can be used in the same system as any mutable accesses.
/// &World,
/// )>,
/// ) {
/// for event in set.p0().iter() {
/// // ...
/// # let _event = event;
/// }
/// set.p1().send(MyEvent::new());
///
/// let entities = set.p2().entities();
/// // ...
/// # let _entities = entities;
/// }
/// # bevy_ecs::system::assert_is_system(event_system);
/// ```
pub struct ParamSet<'w, 's, T: SystemParam> {
param_states: &'s mut T::State,
world: &'w World,
system_meta: SystemMeta,
change_tick: u32,
}
/// The [`SystemParamState`] of [`ParamSet<T::Item>`].
pub struct ParamSetState<T: SystemParamState>(T);
impl_param_set!();
/// A type that can be inserted into a [`World`] as a singleton.
///
/// You can access resource data in systems using the [`Res`] and [`ResMut`] system parameters
///
/// Only one resource of each type can be stored in a [`World`] at any given time.
///
/// # Examples
///
/// ```
/// # let mut world = World::default();
/// # let mut schedule = Schedule::default();
/// # schedule.add_stage("update", SystemStage::parallel());
/// # use bevy_ecs::prelude::*;
/// #[derive(Resource)]
/// struct MyResource { value: u32 }
///
/// world.insert_resource(MyResource { value: 42 });
///
/// fn read_resource_system(resource: Res<MyResource>) {
/// assert_eq!(resource.value, 42);
/// }
///
/// fn write_resource_system(mut resource: ResMut<MyResource>) {
/// assert_eq!(resource.value, 42);
/// resource.value = 0;
/// assert_eq!(resource.value, 0);
/// }
/// # schedule.add_system_to_stage("update", read_resource_system.label("first"));
/// # schedule.add_system_to_stage("update", write_resource_system.after("first"));
/// # schedule.run_once(&mut world);
/// ```
pub trait Resource: Send + Sync + 'static {}
/// Shared borrow of a [`Resource`].
///
/// See the [`Resource`] documentation for usage.
///
/// If you need a unique mutable borrow, use [`ResMut`] instead.
///
/// # Panics
///
/// Panics when used as a [`SystemParameter`](SystemParam) if the resource does not exist.
///
/// Use `Option<Res<T>>` instead if the resource might not always exist.
pub struct Res<'w, T: Resource> {
value: &'w T,
added: &'w Tick,
changed: &'w Tick,
last_change_tick: u32,
change_tick: u32,
}
// SAFETY: Res only reads a single World resource
unsafe impl<'w, T: Resource> ReadOnlySystemParam for Res<'w, T> {}
impl<'w, T: Resource> Debug for Res<'w, T>
where
T: Debug,
{
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
f.debug_tuple("Res").field(&self.value).finish()
}
}
impl<'w, T: Resource> Res<'w, T> {
// no it shouldn't clippy
#[allow(clippy::should_implement_trait)]
pub fn clone(this: &Self) -> Self {
Self {
value: this.value,
added: this.added,
changed: this.changed,
last_change_tick: this.last_change_tick,
change_tick: this.change_tick,
}
}
/// Returns `true` if the resource was added after the system last ran.
pub fn is_added(&self) -> bool {
self.added
.is_older_than(self.last_change_tick, self.change_tick)
}
/// Returns `true` if the resource was added or mutably dereferenced after the system last ran.
pub fn is_changed(&self) -> bool {
self.changed
.is_older_than(self.last_change_tick, self.change_tick)
}
pub fn into_inner(self) -> &'w T {
self.value
}
}
impl<'w, T: Resource> Deref for Res<'w, T> {
type Target = T;
fn deref(&self) -> &Self::Target {
self.value
}
}
impl<'w, T: Resource> AsRef<T> for Res<'w, T> {
#[inline]
fn as_ref(&self) -> &T {
self.deref()
}
}
impl<'w, T: Resource> From<ResMut<'w, T>> for Res<'w, T> {
fn from(res: ResMut<'w, T>) -> Self {
Self {
value: res.value,
added: res.ticks.added,
changed: res.ticks.changed,
change_tick: res.ticks.change_tick,
last_change_tick: res.ticks.last_change_tick,
}
}
}
impl<'w, 'a, T: Resource> IntoIterator for &'a Res<'w, T>
where
&'a T: IntoIterator,
{
type Item = <&'a T as IntoIterator>::Item;
type IntoIter = <&'a T as IntoIterator>::IntoIter;
fn into_iter(self) -> Self::IntoIter {
self.value.into_iter()
}
}
/// The [`SystemParamState`] of [`Res<T>`].
#[doc(hidden)]
pub struct ResState<T> {
component_id: ComponentId,
marker: PhantomData<T>,
}
impl<'a, T: Resource> SystemParam for Res<'a, T> {
type State = ResState<T>;
}
// SAFETY: Res ComponentId and ArchetypeComponentId access is applied to SystemMeta. If this Res
// conflicts with any prior access, a panic will occur.
unsafe impl<T: Resource> SystemParamState for ResState<T> {
type Item<'w, 's> = Res<'w, T>;
fn init(world: &mut World, system_meta: &mut SystemMeta) -> Self {
let component_id = world.initialize_resource::<T>();
let combined_access = system_meta.component_access_set.combined_access();
assert!(
!combined_access.has_write(component_id),
"error[B0002]: Res<{}> in system {} conflicts with a previous ResMut<{0}> access. Consider removing the duplicate access.",
std::any::type_name::<T>(),
system_meta.name,
);
system_meta
.component_access_set
.add_unfiltered_read(component_id);
let archetype_component_id = world
.get_resource_archetype_component_id(component_id)
.unwrap();
system_meta
.archetype_component_access
.add_read(archetype_component_id);
Self {
component_id,
marker: PhantomData,
}
}
#[inline]
unsafe fn get_param<'w, 's>(
state: &'s mut Self,
system_meta: &SystemMeta,
world: &'w World,
change_tick: u32,
) -> Self::Item<'w, 's> {
let (ptr, ticks) = world
.get_resource_with_ticks(state.component_id)
.unwrap_or_else(|| {
panic!(
"Resource requested by {} does not exist: {}",
system_meta.name,
std::any::type_name::<T>()
)
});
Res {
value: ptr.deref(),
added: ticks.added.deref(),
changed: ticks.changed.deref(),
last_change_tick: system_meta.last_change_tick,
change_tick,
}
}
}
/// The [`SystemParamState`] of [`Option<Res<T>>`].
/// See: [`Res<T>`]
#[doc(hidden)]
pub struct OptionResState<T>(ResState<T>);
impl<'a, T: Resource> SystemParam for Option<Res<'a, T>> {
type State = OptionResState<T>;
}
// SAFETY: Only reads a single World resource
unsafe impl<'a, T: Resource> ReadOnlySystemParam for Option<Res<'a, T>> {}
// SAFETY: this impl defers to `ResState`, which initializes
// and validates the correct world access
unsafe impl<T: Resource> SystemParamState for OptionResState<T> {
type Item<'w, 's> = Option<Res<'w, T>>;
fn init(world: &mut World, system_meta: &mut SystemMeta) -> Self {
Self(ResState::init(world, system_meta))
}
#[inline]
unsafe fn get_param<'w, 's>(
state: &'s mut Self,
system_meta: &SystemMeta,
world: &'w World,
change_tick: u32,
) -> Self::Item<'w, 's> {
world
.get_resource_with_ticks(state.0.component_id)
.map(|(ptr, ticks)| Res {
value: ptr.deref(),
added: ticks.added.deref(),
changed: ticks.changed.deref(),
last_change_tick: system_meta.last_change_tick,
change_tick,
})
}
}
/// The [`SystemParamState`] of [`ResMut<T>`].
#[doc(hidden)]
pub struct ResMutState<T> {
component_id: ComponentId,
marker: PhantomData<T>,
}
impl<'a, T: Resource> SystemParam for ResMut<'a, T> {
type State = ResMutState<T>;
}
// SAFETY: Res ComponentId and ArchetypeComponentId access is applied to SystemMeta. If this Res
// conflicts with any prior access, a panic will occur.
unsafe impl<T: Resource> SystemParamState for ResMutState<T> {
type Item<'w, 's> = ResMut<'w, T>;
fn init(world: &mut World, system_meta: &mut SystemMeta) -> Self {
let component_id = world.initialize_resource::<T>();
let combined_access = system_meta.component_access_set.combined_access();
if combined_access.has_write(component_id) {
panic!(
"error[B0002]: ResMut<{}> in system {} conflicts with a previous ResMut<{0}> access. Consider removing the duplicate access.",
std::any::type_name::<T>(), system_meta.name);
} else if combined_access.has_read(component_id) {
panic!(
"error[B0002]: ResMut<{}> in system {} conflicts with a previous Res<{0}> access. Consider removing the duplicate access.",
std::any::type_name::<T>(), system_meta.name);
}
system_meta
.component_access_set
.add_unfiltered_write(component_id);
let archetype_component_id = world
.get_resource_archetype_component_id(component_id)
.unwrap();
system_meta
.archetype_component_access
.add_write(archetype_component_id);
Self {
component_id,
marker: PhantomData,
}
}
#[inline]
unsafe fn get_param<'w, 's>(
state: &'s mut Self,
system_meta: &SystemMeta,
world: &'w World,
change_tick: u32,
) -> Self::Item<'w, 's> {
let value = world
.get_resource_unchecked_mut_with_id(state.component_id)
.unwrap_or_else(|| {
panic!(
"Resource requested by {} does not exist: {}",
system_meta.name,
std::any::type_name::<T>()
)
});
ResMut {
value: value.value,
ticks: Ticks {
added: value.ticks.added,
changed: value.ticks.changed,
last_change_tick: system_meta.last_change_tick,
change_tick,
},
}
}
}
/// The [`SystemParamState`] of [`Option<ResMut<T>>`].
/// See: [`ResMut<T>`]
#[doc(hidden)]
pub struct OptionResMutState<T>(ResMutState<T>);
impl<'a, T: Resource> SystemParam for Option<ResMut<'a, T>> {
type State = OptionResMutState<T>;
}
// SAFETY: this impl defers to `ResMutState`, which initializes
// and validates the correct world access
unsafe impl<T: Resource> SystemParamState for OptionResMutState<T> {
type Item<'w, 's> = Option<ResMut<'w, T>>;
fn init(world: &mut World, system_meta: &mut SystemMeta) -> Self {
Self(ResMutState::init(world, system_meta))
}
#[inline]
unsafe fn get_param<'w, 's>(
state: &'s mut Self,
system_meta: &SystemMeta,
world: &'w World,
change_tick: u32,
) -> Self::Item<'w, 's> {
world
.get_resource_unchecked_mut_with_id(state.0.component_id)
.map(|value| ResMut {
value: value.value,
ticks: Ticks {
added: value.ticks.added,
changed: value.ticks.changed,
last_change_tick: system_meta.last_change_tick,
change_tick,
},
})
}
}
impl<'w, 's> SystemParam for Commands<'w, 's> {
type State = CommandQueue;
}
// SAFETY: Commands only accesses internal state
unsafe impl<'w, 's> ReadOnlySystemParam for Commands<'w, 's> {}
// SAFETY: only local state is accessed
unsafe impl SystemParamState for CommandQueue {
type Item<'w, 's> = Commands<'w, 's>;
fn init(_world: &mut World, _system_meta: &mut SystemMeta) -> Self {
Default::default()
}
fn apply(&mut self, _system_meta: &SystemMeta, world: &mut World) {
#[cfg(feature = "trace")]
let _system_span =
bevy_utils::tracing::info_span!("system_commands", name = _system_meta.name())
.entered();
self.apply(world);
}
#[inline]
unsafe fn get_param<'w, 's>(
state: &'s mut Self,
_system_meta: &SystemMeta,
world: &'w World,
_change_tick: u32,
) -> Self::Item<'w, 's> {
Commands::new(state, world)
}
}
/// SAFETY: only reads world
unsafe impl<'w> ReadOnlySystemParam for &'w World {}
/// The [`SystemParamState`] of [`&World`](crate::world::World).
#[doc(hidden)]
pub struct WorldState;
impl<'w> SystemParam for &'w World {
type State = WorldState;
}
// SAFETY: `read_all` access is set and conflicts result in a panic
unsafe impl SystemParamState for WorldState {
type Item<'w, 's> = &'w World;
fn init(_world: &mut World, system_meta: &mut SystemMeta) -> Self {
let mut access = Access::default();
access.read_all();
if !system_meta
.archetype_component_access
.is_compatible(&access)
{
panic!("&World conflicts with a previous mutable system parameter. Allowing this would break Rust's mutability rules");
}
system_meta.archetype_component_access.extend(&access);
let mut filtered_access = FilteredAccess::default();
filtered_access.read_all();
if !system_meta
.component_access_set
.get_conflicts_single(&filtered_access)
.is_empty()
{
panic!("&World conflicts with a previous mutable system parameter. Allowing this would break Rust's mutability rules");
}
system_meta.component_access_set.add(filtered_access);
WorldState
}
unsafe fn get_param<'w, 's>(
_state: &'s mut Self,
_system_meta: &SystemMeta,
world: &'w World,
_change_tick: u32,
) -> Self::Item<'w, 's> {
world
}
}
/// A system local [`SystemParam`].
///
/// A local may only be accessed by the system itself and is therefore not visible to other systems.
/// If two or more systems specify the same local type each will have their own unique local.
///
/// # Examples
///
/// ```
/// # use bevy_ecs::prelude::*;
/// # let world = &mut World::default();
/// fn write_to_local(mut local: Local<usize>) {
/// *local = 42;
/// }
/// fn read_from_local(local: Local<usize>) -> usize {
/// *local
/// }
/// let mut write_system = IntoSystem::into_system(write_to_local);
/// let mut read_system = IntoSystem::into_system(read_from_local);
/// write_system.initialize(world);
/// read_system.initialize(world);
///
/// assert_eq!(read_system.run((), world), 0);
/// write_system.run((), world);
/// // Note how the read local is still 0 due to the locals not being shared.
/// assert_eq!(read_system.run((), world), 0);
/// ```
///
/// N.B. A [`Local`]s value cannot be read or written to outside of the containing system.
/// To add configuration to a system, convert a capturing closure into the system instead:
///
/// ```
/// # use bevy_ecs::prelude::*;
/// # use bevy_ecs::system::assert_is_system;
/// struct Config(u32);
/// #[derive(Resource)]
/// struct Myu32Wrapper(u32);
/// fn reset_to_system(value: Config) -> impl FnMut(ResMut<Myu32Wrapper>) {
/// move |mut val| val.0 = value.0
/// }
///
/// // .add_system(reset_to_system(my_config))
/// # assert_is_system(reset_to_system(Config(10)));
/// ```
pub struct Local<'a, T: FromWorld + Send + 'static>(pub(crate) &'a mut T);
// SAFETY: Local only accesses internal state
unsafe impl<'a, T: FromWorld + Send + 'static> ReadOnlySystemParam for Local<'a, T> {}
impl<'a, T: FromWorld + Send + Sync + 'static> Debug for Local<'a, T>
where
T: Debug,
{
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
f.debug_tuple("Local").field(&self.0).finish()
}
}
impl<'a, T: FromWorld + Send + Sync + 'static> Deref for Local<'a, T> {
type Target = T;
#[inline]
fn deref(&self) -> &Self::Target {
self.0
}
}
impl<'a, T: FromWorld + Send + Sync + 'static> DerefMut for Local<'a, T> {
#[inline]
fn deref_mut(&mut self) -> &mut Self::Target {
self.0
}
}
impl<'w, 'a, T: FromWorld + Send + 'static> IntoIterator for &'a Local<'w, T>
where
&'a T: IntoIterator,
{
type Item = <&'a T as IntoIterator>::Item;
type IntoIter = <&'a T as IntoIterator>::IntoIter;
fn into_iter(self) -> Self::IntoIter {
self.0.into_iter()
}
}
impl<'w, 'a, T: FromWorld + Send + 'static> IntoIterator for &'a mut Local<'w, T>
where
&'a mut T: IntoIterator,
{
type Item = <&'a mut T as IntoIterator>::Item;
type IntoIter = <&'a mut T as IntoIterator>::IntoIter;
fn into_iter(self) -> Self::IntoIter {
self.0.into_iter()
}
}
/// The [`SystemParamState`] of [`Local<T>`].
#[doc(hidden)]
pub struct LocalState<T: Send + 'static>(pub(crate) SyncCell<T>);
impl<'a, T: FromWorld + Send + 'static> SystemParam for Local<'a, T> {
type State = LocalState<T>;
}
// SAFETY: only local state is accessed
unsafe impl<T: FromWorld + Send + 'static> SystemParamState for LocalState<T> {
type Item<'w, 's> = Local<'s, T>;
fn init(world: &mut World, _system_meta: &mut SystemMeta) -> Self {
Self(SyncCell::new(T::from_world(world)))
}
#[inline]
unsafe fn get_param<'w, 's>(
state: &'s mut Self,
_system_meta: &SystemMeta,
_world: &'w World,
_change_tick: u32,
) -> Self::Item<'w, 's> {
Local(state.0.get())
}
}
/// A [`SystemParam`] that grants access to the entities that had their `T` [`Component`] removed.
///
/// Note that this does not allow you to see which data existed before removal.
/// If you need this, you will need to track the component data value on your own,
/// using a regularly scheduled system that requests `Query<(Entity, &T), Changed<T>>`
/// and stores the data somewhere safe to later cross-reference.
///
/// If you are using `bevy_ecs` as a standalone crate,
/// note that the `RemovedComponents` list will not be automatically cleared for you,
/// and will need to be manually flushed using [`World::clear_trackers`]
///
/// For users of `bevy` and `bevy_app`, this is automatically done in `bevy_app::App::update`.
/// For the main world, [`World::clear_trackers`] is run after the main schedule is run and after
/// `SubApp`'s have run.
///
/// # Examples
///
/// Basic usage:
///
/// ```
/// # use bevy_ecs::component::Component;
/// # use bevy_ecs::system::IntoSystem;
/// # use bevy_ecs::system::RemovedComponents;
/// #
/// # #[derive(Component)]
/// # struct MyComponent;
///
/// fn react_on_removal(removed: RemovedComponents<MyComponent>) {
/// removed.iter().for_each(|removed_entity| println!("{:?}", removed_entity));
/// }
///
/// # bevy_ecs::system::assert_is_system(react_on_removal);
/// ```
pub struct RemovedComponents<'a, T: Component> {
world: &'a World,
component_id: ComponentId,
marker: PhantomData<T>,
}
impl<'a, T: Component> RemovedComponents<'a, T> {
/// Returns an iterator over the entities that had their `T` [`Component`] removed.
pub fn iter(&self) -> std::iter::Cloned<std::slice::Iter<'_, Entity>> {
self.world.removed_with_id(self.component_id)
}
}
impl<'a, T: Component> IntoIterator for &'a RemovedComponents<'a, T> {
type Item = Entity;
type IntoIter = std::iter::Cloned<std::slice::Iter<'a, Entity>>;
fn into_iter(self) -> Self::IntoIter {
self.iter()
}
}
// SAFETY: Only reads World components
unsafe impl<'a, T: Component> ReadOnlySystemParam for RemovedComponents<'a, T> {}
/// The [`SystemParamState`] of [`RemovedComponents<T>`].
#[doc(hidden)]
pub struct RemovedComponentsState<T> {
component_id: ComponentId,
marker: PhantomData<T>,
}
impl<'a, T: Component> SystemParam for RemovedComponents<'a, T> {
type State = RemovedComponentsState<T>;
}
// SAFETY: no component access. removed component entity collections can be read in parallel and are
// never mutably borrowed during system execution
unsafe impl<T: Component> SystemParamState for RemovedComponentsState<T> {
type Item<'w, 's> = RemovedComponents<'w, T>;
fn init(world: &mut World, _system_meta: &mut SystemMeta) -> Self {
Self {
component_id: world.init_component::<T>(),
marker: PhantomData,
}
}
#[inline]
unsafe fn get_param<'w, 's>(
state: &'s mut Self,
_system_meta: &SystemMeta,
world: &'w World,
_change_tick: u32,
) -> Self::Item<'w, 's> {
RemovedComponents {
world,
component_id: state.component_id,
marker: PhantomData,
}
}
}
/// Shared borrow of a non-[`Send`] resource.
///
/// Only `Send` resources may be accessed with the [`Res`] [`SystemParam`]. In case that the
/// resource does not implement `Send`, this `SystemParam` wrapper can be used. This will instruct
/// the scheduler to instead run the system on the main thread so that it doesn't send the resource
/// over to another thread.
///
/// # Panics
///
/// Panics when used as a `SystemParameter` if the resource does not exist.
///
/// Use `Option<NonSend<T>>` instead if the resource might not always exist.
pub struct NonSend<'w, T: 'static> {
pub(crate) value: &'w T,
ticks: ComponentTicks,
last_change_tick: u32,
change_tick: u32,
}
// SAFETY: Only reads a single World non-send resource
unsafe impl<'w, T> ReadOnlySystemParam for NonSend<'w, T> {}
impl<'w, T> Debug for NonSend<'w, T>
where
T: Debug,
{
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
f.debug_tuple("NonSend").field(&self.value).finish()
}
}
impl<'w, T: 'static> NonSend<'w, T> {
/// Returns `true` if the resource was added after the system last ran.
pub fn is_added(&self) -> bool {
self.ticks.is_added(self.last_change_tick, self.change_tick)
}
/// Returns `true` if the resource was added or mutably dereferenced after the system last ran.
pub fn is_changed(&self) -> bool {
self.ticks
.is_changed(self.last_change_tick, self.change_tick)
}
}
impl<'w, T> Deref for NonSend<'w, T> {
type Target = T;
fn deref(&self) -> &Self::Target {
self.value
}
}
impl<'a, T> From<NonSendMut<'a, T>> for NonSend<'a, T> {
fn from(nsm: NonSendMut<'a, T>) -> Self {
Self {
value: nsm.value,
ticks: ComponentTicks {
added: nsm.ticks.added.to_owned(),
changed: nsm.ticks.changed.to_owned(),
},
change_tick: nsm.ticks.change_tick,
last_change_tick: nsm.ticks.last_change_tick,
}
}
}
/// The [`SystemParamState`] of [`NonSend<T>`].
#[doc(hidden)]
pub struct NonSendState<T> {
component_id: ComponentId,
marker: PhantomData<fn() -> T>,
}
impl<'a, T: 'static> SystemParam for NonSend<'a, T> {
type State = NonSendState<T>;
}
// SAFETY: NonSendComponentId and ArchetypeComponentId access is applied to SystemMeta. If this
// NonSend conflicts with any prior access, a panic will occur.
unsafe impl<T: 'static> SystemParamState for NonSendState<T> {
type Item<'w, 's> = NonSend<'w, T>;
fn init(world: &mut World, system_meta: &mut SystemMeta) -> Self {
system_meta.set_non_send();
let component_id = world.initialize_non_send_resource::<T>();
let combined_access = system_meta.component_access_set.combined_access();
assert!(
!combined_access.has_write(component_id),
"error[B0002]: NonSend<{}> in system {} conflicts with a previous mutable resource access ({0}). Consider removing the duplicate access.",
std::any::type_name::<T>(),
system_meta.name,
);
system_meta
.component_access_set
.add_unfiltered_read(component_id);
let archetype_component_id = world
.get_resource_archetype_component_id(component_id)
.unwrap();
system_meta
.archetype_component_access
.add_read(archetype_component_id);
Self {
component_id,
marker: PhantomData,
}
}
#[inline]
unsafe fn get_param<'w, 's>(
state: &'s mut Self,
system_meta: &SystemMeta,
world: &'w World,
change_tick: u32,
) -> Self::Item<'w, 's> {
world.validate_non_send_access::<T>();
let (ptr, ticks) = world
.get_resource_with_ticks(state.component_id)
.unwrap_or_else(|| {
panic!(
"Non-send resource requested by {} does not exist: {}",
system_meta.name,
std::any::type_name::<T>()
)
});
NonSend {
value: ptr.deref(),
ticks: ticks.read(),
last_change_tick: system_meta.last_change_tick,
change_tick,
}
}
}
/// The [`SystemParamState`] of [`Option<NonSend<T>>`].
/// See: [`NonSend<T>`]
#[doc(hidden)]
pub struct OptionNonSendState<T>(NonSendState<T>);
impl<'w, T: 'static> SystemParam for Option<NonSend<'w, T>> {
type State = OptionNonSendState<T>;
}
// SAFETY: Only reads a single non-send resource
unsafe impl<'w, T: 'static> ReadOnlySystemParam for Option<NonSend<'w, T>> {}
// SAFETY: this impl defers to `NonSendState`, which initializes
// and validates the correct world access
unsafe impl<T: 'static> SystemParamState for OptionNonSendState<T> {
type Item<'w, 's> = Option<NonSend<'w, T>>;
fn init(world: &mut World, system_meta: &mut SystemMeta) -> Self {
Self(NonSendState::init(world, system_meta))
}
#[inline]
unsafe fn get_param<'w, 's>(
state: &'s mut Self,
system_meta: &SystemMeta,
world: &'w World,
change_tick: u32,
) -> Self::Item<'w, 's> {
world.validate_non_send_access::<T>();
world
.get_resource_with_ticks(state.0.component_id)
.map(|(ptr, ticks)| NonSend {
value: ptr.deref(),
ticks: ticks.read(),
last_change_tick: system_meta.last_change_tick,
change_tick,
})
}
}
/// The [`SystemParamState`] of [`NonSendMut<T>`].
#[doc(hidden)]
pub struct NonSendMutState<T> {
component_id: ComponentId,
marker: PhantomData<fn() -> T>,
}
impl<'a, T: 'static> SystemParam for NonSendMut<'a, T> {
type State = NonSendMutState<T>;
}
// SAFETY: NonSendMut ComponentId and ArchetypeComponentId access is applied to SystemMeta. If this
// NonSendMut conflicts with any prior access, a panic will occur.
unsafe impl<T: 'static> SystemParamState for NonSendMutState<T> {
type Item<'w, 's> = NonSendMut<'w, T>;
fn init(world: &mut World, system_meta: &mut SystemMeta) -> Self {
system_meta.set_non_send();
let component_id = world.initialize_non_send_resource::<T>();
let combined_access = system_meta.component_access_set.combined_access();
if combined_access.has_write(component_id) {
panic!(
"error[B0002]: NonSendMut<{}> in system {} conflicts with a previous mutable resource access ({0}). Consider removing the duplicate access.",
std::any::type_name::<T>(), system_meta.name);
} else if combined_access.has_read(component_id) {
panic!(
"error[B0002]: NonSendMut<{}> in system {} conflicts with a previous immutable resource access ({0}). Consider removing the duplicate access.",
std::any::type_name::<T>(), system_meta.name);
}
system_meta
.component_access_set
.add_unfiltered_write(component_id);
let archetype_component_id = world
.get_resource_archetype_component_id(component_id)
.unwrap();
system_meta
.archetype_component_access
.add_write(archetype_component_id);
Self {
component_id,
marker: PhantomData,
}
}
#[inline]
unsafe fn get_param<'w, 's>(
state: &'s mut Self,
system_meta: &SystemMeta,
world: &'w World,
change_tick: u32,
) -> Self::Item<'w, 's> {
world.validate_non_send_access::<T>();
let (ptr, ticks) = world
.get_resource_with_ticks(state.component_id)
.unwrap_or_else(|| {
panic!(
"Non-send resource requested by {} does not exist: {}",
system_meta.name,
std::any::type_name::<T>()
)
});
NonSendMut {
value: ptr.assert_unique().deref_mut(),
ticks: Ticks::from_tick_cells(ticks, system_meta.last_change_tick, change_tick),
}
}
}
/// The [`SystemParamState`] of [`Option<NonSendMut<T>>`].
/// See: [`NonSendMut<T>`]
#[doc(hidden)]
pub struct OptionNonSendMutState<T>(NonSendMutState<T>);
impl<'a, T: 'static> SystemParam for Option<NonSendMut<'a, T>> {
type State = OptionNonSendMutState<T>;
}
// SAFETY: this impl defers to `NonSendMutState`, which initializes
// and validates the correct world access
unsafe impl<T: 'static> SystemParamState for OptionNonSendMutState<T> {
type Item<'w, 's> = Option<NonSendMut<'w, T>>;
fn init(world: &mut World, system_meta: &mut SystemMeta) -> Self {
Self(NonSendMutState::init(world, system_meta))
}
#[inline]
unsafe fn get_param<'w, 's>(
state: &'s mut Self,
system_meta: &SystemMeta,
world: &'w World,
change_tick: u32,
) -> Self::Item<'w, 's> {
world.validate_non_send_access::<T>();
world
.get_resource_with_ticks(state.0.component_id)
.map(|(ptr, ticks)| NonSendMut {
value: ptr.assert_unique().deref_mut(),
ticks: Ticks::from_tick_cells(ticks, system_meta.last_change_tick, change_tick),
})
}
}
impl<'a> SystemParam for &'a Archetypes {
type State = ArchetypesState;
}
// SAFETY: Only reads World archetypes
unsafe impl<'a> ReadOnlySystemParam for &'a Archetypes {}
/// The [`SystemParamState`] of [`Archetypes`].
#[doc(hidden)]
pub struct ArchetypesState;
// SAFETY: no component value access
unsafe impl SystemParamState for ArchetypesState {
type Item<'w, 's> = &'w Archetypes;
fn init(_world: &mut World, _system_meta: &mut SystemMeta) -> Self {
Self
}
#[inline]
unsafe fn get_param<'w, 's>(
_state: &'s mut Self,
_system_meta: &SystemMeta,
world: &'w World,
_change_tick: u32,
) -> Self::Item<'w, 's> {
world.archetypes()
}
}
impl<'a> SystemParam for &'a Components {
type State = ComponentsState;
}
// SAFETY: Only reads World components
unsafe impl<'a> ReadOnlySystemParam for &'a Components {}
/// The [`SystemParamState`] of [`Components`].
#[doc(hidden)]
pub struct ComponentsState;
// SAFETY: no component value access
unsafe impl SystemParamState for ComponentsState {
type Item<'w, 's> = &'w Components;
fn init(_world: &mut World, _system_meta: &mut SystemMeta) -> Self {
Self
}
#[inline]
unsafe fn get_param<'w, 's>(
_state: &'s mut Self,
_system_meta: &SystemMeta,
world: &'w World,
_change_tick: u32,
) -> Self::Item<'w, 's> {
world.components()
}
}
impl<'a> SystemParam for &'a Entities {
type State = EntitiesState;
}
// SAFETY: Only reads World entities
unsafe impl<'a> ReadOnlySystemParam for &'a Entities {}
/// The [`SystemParamState`] of [`Entities`].
#[doc(hidden)]
pub struct EntitiesState;
// SAFETY: no component value access
unsafe impl SystemParamState for EntitiesState {
type Item<'w, 's> = &'w Entities;
fn init(_world: &mut World, _system_meta: &mut SystemMeta) -> Self {
Self
}
#[inline]
unsafe fn get_param<'w, 's>(
_state: &'s mut Self,
_system_meta: &SystemMeta,
world: &'w World,
_change_tick: u32,
) -> Self::Item<'w, 's> {
world.entities()
}
}
impl<'a> SystemParam for &'a Bundles {
type State = BundlesState;
}
// SAFETY: Only reads World bundles
unsafe impl<'a> ReadOnlySystemParam for &'a Bundles {}
/// The [`SystemParamState`] of [`Bundles`].
#[doc(hidden)]
pub struct BundlesState;
// SAFETY: no component value access
unsafe impl SystemParamState for BundlesState {
type Item<'w, 's> = &'w Bundles;
fn init(_world: &mut World, _system_meta: &mut SystemMeta) -> Self {
Self
}
#[inline]
unsafe fn get_param<'w, 's>(
_state: &'s mut Self,
_system_meta: &SystemMeta,
world: &'w World,
_change_tick: u32,
) -> Self::Item<'w, 's> {
world.bundles()
}
}
/// A [`SystemParam`] that reads the previous and current change ticks of the system.
///
/// A system's change ticks are updated each time it runs:
/// - `last_change_tick` copies the previous value of `change_tick`
/// - `change_tick` copies the current value of [`World::read_change_tick`]
///
/// Component change ticks that are more recent than `last_change_tick` will be detected by the system.
/// Those can be read by calling [`last_changed`](crate::change_detection::DetectChanges::last_changed)
/// on a [`Mut<T>`](crate::change_detection::Mut) or [`ResMut<T>`](crate::change_detection::ResMut).
#[derive(Debug)]
pub struct SystemChangeTick {
last_change_tick: u32,
change_tick: u32,
}
impl SystemChangeTick {
/// Returns the current [`World`] change tick seen by the system.
#[inline]
pub fn change_tick(&self) -> u32 {
self.change_tick
}
/// Returns the [`World`] change tick seen by the system the previous time it ran.
#[inline]
pub fn last_change_tick(&self) -> u32 {
self.last_change_tick
}
}
// SAFETY: Only reads internal system state
unsafe impl ReadOnlySystemParam for SystemChangeTick {}
impl SystemParam for SystemChangeTick {
type State = SystemChangeTickState;
}
/// The [`SystemParamState`] of [`SystemChangeTick`].
#[doc(hidden)]
pub struct SystemChangeTickState {}
// SAFETY: `SystemParamTickState` doesn't require any world access
unsafe impl SystemParamState for SystemChangeTickState {
type Item<'w, 's> = SystemChangeTick;
fn init(_world: &mut World, _system_meta: &mut SystemMeta) -> Self {
Self {}
}
unsafe fn get_param<'w, 's>(
_state: &'s mut Self,
system_meta: &SystemMeta,
_world: &'w World,
change_tick: u32,
) -> Self::Item<'w, 's> {
SystemChangeTick {
last_change_tick: system_meta.last_change_tick,
change_tick,
}
}
}
/// Name of the system that corresponds to this [`crate::system::SystemState`].
///
/// This is not a reliable identifier, it is more so useful for debugging
/// purposes of finding where a system parameter is being used incorrectly.
pub struct SystemName<'s> {
name: &'s str,
}
impl<'s> SystemName<'s> {
pub fn name(&self) -> &str {
self.name
}
}
impl<'s> Deref for SystemName<'s> {
type Target = str;
fn deref(&self) -> &Self::Target {
self.name()
}
}
impl<'s> AsRef<str> for SystemName<'s> {
fn as_ref(&self) -> &str {
self.name()
}
}
impl<'s> From<SystemName<'s>> for &'s str {
fn from(name: SystemName<'s>) -> &'s str {
name.name
}
}
impl<'s> std::fmt::Debug for SystemName<'s> {
#[inline(always)]
fn fmt(&self, f: &mut std::fmt::Formatter) -> std::fmt::Result {
f.debug_tuple("SystemName").field(&self.name()).finish()
}
}
impl<'s> std::fmt::Display for SystemName<'s> {
#[inline(always)]
fn fmt(&self, f: &mut std::fmt::Formatter) -> std::fmt::Result {
std::fmt::Display::fmt(&self.name(), f)
}
}
impl<'s> SystemParam for SystemName<'s> {
type State = SystemNameState;
}
// SAFETY: Only reads internal system state
unsafe impl<'s> ReadOnlySystemParam for SystemName<'s> {}
/// The [`SystemParamState`] of [`SystemName`].
#[doc(hidden)]
pub struct SystemNameState {
name: Cow<'static, str>,
}
// SAFETY: no component value access
unsafe impl SystemParamState for SystemNameState {
type Item<'w, 's> = SystemName<'s>;
fn init(_world: &mut World, system_meta: &mut SystemMeta) -> Self {
Self {
name: system_meta.name.clone(),
}
}
#[inline]
unsafe fn get_param<'w, 's>(
state: &'s mut Self,
_system_meta: &SystemMeta,
_world: &'w World,
_change_tick: u32,
) -> Self::Item<'w, 's> {
SystemName {
name: state.name.as_ref(),
}
}
}
macro_rules! impl_system_param_tuple {
($($param: ident),*) => {
impl<$($param: SystemParam),*> SystemParam for ($($param,)*) {
type State = ($($param::State,)*);
}
// SAFETY: tuple consists only of ReadOnlySystemParams
unsafe impl<$($param: ReadOnlySystemParam),*> ReadOnlySystemParam for ($($param,)*) {}
// SAFETY: implementors of each `SystemParamState` in the tuple have validated their impls
#[allow(clippy::undocumented_unsafe_blocks)] // false positive by clippy
#[allow(non_snake_case)]
unsafe impl<$($param: SystemParamState),*> SystemParamState for ($($param,)*) {
type Item<'w, 's> = ($($param::Item::<'w, 's>,)*);
#[inline]
fn init(_world: &mut World, _system_meta: &mut SystemMeta) -> Self {
(($($param::init(_world, _system_meta),)*))
}
#[inline]
fn new_archetype(&mut self, _archetype: &Archetype, _system_meta: &mut SystemMeta) {
let ($($param,)*) = self;
$($param.new_archetype(_archetype, _system_meta);)*
}
#[inline]
fn apply(&mut self, _system_meta: &SystemMeta, _world: &mut World) {
let ($($param,)*) = self;
$($param.apply(_system_meta, _world);)*
}
#[inline]
#[allow(clippy::unused_unit)]
unsafe fn get_param<'w, 's>(
state: &'s mut Self,
_system_meta: &SystemMeta,
_world: &'w World,
_change_tick: u32,
) -> Self::Item<'w, 's> {
let ($($param,)*) = state;
($($param::get_param($param, _system_meta, _world, _change_tick),)*)
}
}
};
}
all_tuples!(impl_system_param_tuple, 0, 16, P);
pub mod lifetimeless {
pub type SQuery<Q, F = ()> = super::Query<'static, 'static, Q, F>;
pub type Read<T> = &'static T;
pub type Write<T> = &'static mut T;
pub type SRes<T> = super::Res<'static, T>;
pub type SResMut<T> = super::ResMut<'static, T>;
pub type SCommands = crate::system::Commands<'static, 'static>;
}
/// A helper for using system parameters in generic contexts
///
/// This type is a [`SystemParam`] adapter which always has
/// `Self::State::Item == Self` (ignoring lifetimes for brevity),
/// no matter the argument [`SystemParam`] (`P`) (other than
/// that `P` must be `'static`)
///
/// This makes it useful for having arbitrary [`SystemParam`] type arguments
/// to function systems, or for generic types using the [`derive@SystemParam`]
/// derive:
///
/// ```
/// # use bevy_ecs::prelude::*;
/// use bevy_ecs::system::{SystemParam, StaticSystemParam};
/// #[derive(SystemParam)]
/// struct GenericParam<'w,'s, T: SystemParam + 'static> {
/// field: StaticSystemParam<'w, 's, T>,
/// }
/// fn do_thing_generically<T: SystemParam + 'static>(t: StaticSystemParam<T>) {}
///
/// fn check_always_is_system<T: SystemParam + 'static>(){
/// bevy_ecs::system::assert_is_system(do_thing_generically::<T>);
/// }
/// ```
/// Note that in a real case you'd generally want
/// additional bounds on `P`, for your use of the parameter
/// to have a reason to be generic.
///
/// For example, using this would allow a type to be generic over
/// whether a resource is accessed mutably or not, with
/// impls being bounded on [`P: Deref<Target=MyType>`](Deref), and
/// [`P: DerefMut<Target=MyType>`](DerefMut) depending on whether the
/// method requires mutable access or not.
///
/// The method which doesn't use this type will not compile:
/// ```compile_fail
/// # use bevy_ecs::prelude::*;
/// # use bevy_ecs::system::{SystemParam, StaticSystemParam};
///
/// fn do_thing_generically<T: SystemParam + 'static>(t: T) {}
///
/// #[derive(SystemParam)]
/// struct GenericParam<'w, 's, T: SystemParam> {
/// field: T,
/// #[system_param(ignore)]
/// // Use the lifetimes in this type, or they will be unbound.
/// phantom: core::marker::PhantomData<&'w &'s ()>
/// }
/// # fn check_always_is_system<T: SystemParam + 'static>(){
/// # bevy_ecs::system::assert_is_system(do_thing_generically::<T>);
/// # }
/// ```
///
pub struct StaticSystemParam<'w, 's, P: SystemParam>(SystemParamItem<'w, 's, P>);
impl<'w, 's, P: SystemParam> Deref for StaticSystemParam<'w, 's, P> {
type Target = SystemParamItem<'w, 's, P>;
fn deref(&self) -> &Self::Target {
&self.0
}
}
impl<'w, 's, P: SystemParam> DerefMut for StaticSystemParam<'w, 's, P> {
fn deref_mut(&mut self) -> &mut Self::Target {
&mut self.0
}
}
impl<'w, 's, P: SystemParam> StaticSystemParam<'w, 's, P> {
/// Get the value of the parameter
pub fn into_inner(self) -> SystemParamItem<'w, 's, P> {
self.0
}
}
/// The [`SystemParamState`] of [`StaticSystemParam`].
#[doc(hidden)]
pub struct StaticSystemParamState<S, P>(S, PhantomData<fn() -> P>);
// SAFETY: This doesn't add any more reads, and the delegated fetch confirms it
unsafe impl<'w, 's, P: ReadOnlySystemParam + 'static> ReadOnlySystemParam
for StaticSystemParam<'w, 's, P>
{
}
impl<'world, 'state, P: SystemParam + 'static> SystemParam
for StaticSystemParam<'world, 'state, P>
{
type State = StaticSystemParamState<P::State, P>;
}
// SAFETY: all methods are just delegated to `S`'s `SystemParamState` implementation
unsafe impl<S: SystemParamState, P: SystemParam<State = S> + 'static> SystemParamState
for StaticSystemParamState<S, P>
{
type Item<'world, 'state> = StaticSystemParam<'world, 'state, P>;
fn init(world: &mut World, system_meta: &mut SystemMeta) -> Self {
Self(S::init(world, system_meta), PhantomData)
}
fn new_archetype(&mut self, archetype: &Archetype, system_meta: &mut SystemMeta) {
self.0.new_archetype(archetype, system_meta);
}
fn apply(&mut self, system_meta: &SystemMeta, world: &mut World) {
self.0.apply(system_meta, world);
}
unsafe fn get_param<'world, 'state>(
state: &'state mut Self,
system_meta: &SystemMeta,
world: &'world World,
change_tick: u32,
) -> Self::Item<'world, 'state> {
// SAFETY: We properly delegate SystemParamState
StaticSystemParam(S::get_param(&mut state.0, system_meta, world, change_tick))
}
}
#[cfg(test)]
mod tests {
use super::*;
use crate::{
self as bevy_ecs, // Necessary for the `SystemParam` Derive when used inside `bevy_ecs`.
query::{ReadOnlyWorldQuery, WorldQuery},
system::Query,
};
// Compile test for #2838
#[derive(SystemParam)]
pub struct SpecialQuery<
'w,
's,
Q: WorldQuery + Send + Sync + 'static,
F: ReadOnlyWorldQuery + Send + Sync + 'static = (),
> {
_query: Query<'w, 's, Q, F>,
}
#[derive(SystemParam)]
pub struct SpecialRes<'w, T: Resource> {
_res: Res<'w, T>,
}
#[derive(SystemParam)]
pub struct SpecialLocal<'s, T: FromWorld + Send + 'static> {
_local: Local<'s, T>,
}
#[derive(Resource)]
pub struct R<const I: usize>;
#[derive(SystemParam)]
pub struct ConstGenericParam<'w, const I: usize>(Res<'w, R<I>>);
#[derive(SystemParam)]
pub struct LongParam<'w> {
_r0: Res<'w, R<0>>,
_r1: Res<'w, R<1>>,
_r2: Res<'w, R<2>>,
_r3: Res<'w, R<3>>,
_r4: Res<'w, R<4>>,
_r5: Res<'w, R<5>>,
_r6: Res<'w, R<6>>,
_r7: Res<'w, R<7>>,
_r8: Res<'w, R<8>>,
_r9: Res<'w, R<9>>,
_r10: Res<'w, R<10>>,
_r11: Res<'w, R<11>>,
_r12: Res<'w, R<12>>,
_r13: Res<'w, R<13>>,
_r14: Res<'w, R<14>>,
_r15: Res<'w, R<15>>,
_r16: Res<'w, R<16>>,
}
#[allow(dead_code)]
fn long_system(_param: LongParam) {
crate::system::assert_is_system(long_system);
}
#[derive(SystemParam)]
pub struct UnitParam;
#[derive(SystemParam)]
pub struct TupleParam<'w, 's, R: Resource, L: FromWorld + Send + 'static>(
Res<'w, R>,
Local<'s, L>,
);
#[derive(Resource)]
struct PrivateResource;
#[derive(SystemParam)]
pub struct EncapsulatedParam<'w>(Res<'w, PrivateResource>);
}