bevy/crates/bevy_ecs/src/system/mod.rs
Mike 687e379800
Updates for rust 1.73 (#10035)
# Objective

- Updates for rust 1.73

## Solution

- new doc check for `redundant_explicit_links`
- updated to text for compile fail tests

---

## Changelog

- updates for rust 1.73
2023-10-06 00:31:10 +00:00

1939 lines
58 KiB
Rust

//! Tools for controlling behavior in an ECS application.
//!
//! Systems define how an ECS based application behaves.
//! Systems are added to a [`Schedule`](crate::schedule::Schedule), which is then run.
//! A system is usually written as a normal function, which is automatically converted into a system.
//!
//! System functions can have parameters, through which one can query and mutate Bevy ECS state.
//! Only types that implement [`SystemParam`] can be used, automatically fetching data from
//! the [`World`].
//!
//! System functions often look like this:
//!
//! ```
//! # use bevy_ecs::prelude::*;
//! #
//! # #[derive(Component)]
//! # struct Player { alive: bool }
//! # #[derive(Component)]
//! # struct Score(u32);
//! # #[derive(Resource)]
//! # struct Round(u32);
//! #
//! fn update_score_system(
//! mut query: Query<(&Player, &mut Score)>,
//! mut round: ResMut<Round>,
//! ) {
//! for (player, mut score) in &mut query {
//! if player.alive {
//! score.0 += round.0;
//! }
//! }
//! round.0 += 1;
//! }
//! # bevy_ecs::system::assert_is_system(update_score_system);
//! ```
//!
//! # System ordering
//!
//! By default, the execution of systems is parallel and not deterministic.
//! Not all systems can run together: if a system mutably accesses data,
//! no other system that reads or writes that data can be run at the same time.
//! These systems are said to be **incompatible**.
//!
//! The relative order in which incompatible systems are run matters.
//! When this is not specified, a **system order ambiguity** exists in your schedule.
//! You can **explicitly order** systems:
//!
//! - by calling the `.before(this_system)` or `.after(that_system)` methods when adding them to your schedule
//! - by adding them to a [`SystemSet`], and then using `.configure_sets(ThisSet.before(ThatSet))` syntax to configure many systems at once
//! - through the use of `.add_systems((system_a, system_b, system_c).chain())`
//!
//! [`SystemSet`]: crate::schedule::SystemSet
//!
//! ## Example
//!
//! ```
//! # use bevy_ecs::prelude::*;
//! # let mut schedule = Schedule::default();
//! # let mut world = World::new();
//! // Configure these systems to run in order using `chain()`.
//! schedule.add_systems((print_first, print_last).chain());
//! // Prints "HelloWorld!"
//! schedule.run(&mut world);
//!
//! // Configure this system to run in between the other two systems
//! // using explicit dependencies.
//! schedule.add_systems(print_mid.after(print_first).before(print_last));
//! // Prints "Hello, World!"
//! schedule.run(&mut world);
//!
//! fn print_first() {
//! print!("Hello");
//! }
//! fn print_mid() {
//! print!(", ");
//! }
//! fn print_last() {
//! println!("World!");
//! }
//! ```
//!
//! # System parameter list
//! Following is the complete list of accepted types as system parameters:
//!
//! - [`Query`]
//! - [`Res`] and `Option<Res>`
//! - [`ResMut`] and `Option<ResMut>`
//! - [`Commands`]
//! - [`Local`]
//! - [`EventReader`](crate::event::EventReader)
//! - [`EventWriter`](crate::event::EventWriter)
//! - [`NonSend`] and `Option<NonSend>`
//! - [`NonSendMut`] and `Option<NonSendMut>`
//! - [`&World`](crate::world::World)
//! - [`RemovedComponents`](crate::removal_detection::RemovedComponents)
//! - [`SystemName`]
//! - [`SystemChangeTick`]
//! - [`Archetypes`](crate::archetype::Archetypes) (Provides Archetype metadata)
//! - [`Bundles`](crate::bundle::Bundles) (Provides Bundles metadata)
//! - [`Components`](crate::component::Components) (Provides Components metadata)
//! - [`Entities`](crate::entity::Entities) (Provides Entities metadata)
//! - All tuples between 1 to 16 elements where each element implements [`SystemParam`]
//! - [`()` (unit primitive type)](https://doc.rust-lang.org/stable/std/primitive.unit.html)
mod adapter_system;
mod combinator;
mod commands;
mod exclusive_function_system;
mod exclusive_system_param;
mod function_system;
mod query;
#[allow(clippy::module_inception)]
mod system;
mod system_param;
mod system_registry;
use std::borrow::Cow;
pub use adapter_system::*;
pub use combinator::*;
pub use commands::*;
pub use exclusive_function_system::*;
pub use exclusive_system_param::*;
pub use function_system::*;
pub use query::*;
pub use system::*;
pub use system_param::*;
pub use system_registry::*;
use crate::world::World;
/// Conversion trait to turn something into a [`System`].
///
/// Use this to get a system from a function. Also note that every system implements this trait as
/// well.
///
/// # Examples
///
/// ```
/// use bevy_ecs::prelude::*;
///
/// fn my_system_function(a_usize_local: Local<usize>) {}
///
/// let system = IntoSystem::into_system(my_system_function);
/// ```
// This trait has to be generic because we have potentially overlapping impls, in particular
// because Rust thinks a type could impl multiple different `FnMut` combinations
// even though none can currently
pub trait IntoSystem<In, Out, Marker>: Sized {
/// The type of [`System`] that this instance converts into.
type System: System<In = In, Out = Out>;
/// Turns this value into its corresponding [`System`].
fn into_system(this: Self) -> Self::System;
/// Pass the output of this system `A` into a second system `B`, creating a new compound system.
///
/// The second system must have `In<T>` as its first parameter, where `T`
/// is the return type of the first system.
fn pipe<B, Final, MarkerB>(self, system: B) -> PipeSystem<Self::System, B::System>
where
B: IntoSystem<Out, Final, MarkerB>,
{
let system_a = IntoSystem::into_system(self);
let system_b = IntoSystem::into_system(system);
let name = format!("Pipe({}, {})", system_a.name(), system_b.name());
PipeSystem::new(system_a, system_b, Cow::Owned(name))
}
/// Pass the output of this system into the passed function `f`, creating a new system that
/// outputs the value returned from the function.
///
/// ```
/// # use bevy_ecs::prelude::*;
/// # let mut schedule = Schedule::default();
/// // Ignores the output of a system that may fail.
/// schedule.add_systems(my_system.map(std::mem::drop));
/// # let mut world = World::new();
/// # world.insert_resource(T);
/// # schedule.run(&mut world);
///
/// # #[derive(Resource)] struct T;
/// # type Err = ();
/// fn my_system(res: Res<T>) -> Result<(), Err> {
/// // ...
/// # Err(())
/// }
/// ```
fn map<T, F>(self, f: F) -> AdapterSystem<F, Self::System>
where
F: Send + Sync + 'static + FnMut(Out) -> T,
{
let system = Self::into_system(self);
let name = system.name();
AdapterSystem::new(f, system, name)
}
}
// All systems implicitly implement IntoSystem.
impl<T: System> IntoSystem<T::In, T::Out, ()> for T {
type System = T;
fn into_system(this: Self) -> Self {
this
}
}
/// Wrapper type to mark a [`SystemParam`] as an input.
///
/// [`System`]s may take an optional input which they require to be passed to them when they
/// are being [`run`](System::run). For [`FunctionSystems`](FunctionSystem) the input may be marked
/// with this `In` type, but only the first param of a function may be tagged as an input. This also
/// means a system can only have one or zero input parameters.
///
/// # Examples
///
/// Here is a simple example of a system that takes a [`usize`] returning the square of it.
///
/// ```
/// use bevy_ecs::prelude::*;
///
/// fn main() {
/// let mut square_system = IntoSystem::into_system(square);
///
/// let mut world = World::default();
/// square_system.initialize(&mut world);
/// assert_eq!(square_system.run(12, &mut world), 144);
/// }
///
/// fn square(In(input): In<usize>) -> usize {
/// input * input
/// }
/// ```
pub struct In<In>(pub In);
/// A collection of common adapters for [piping](crate::system::PipeSystem) the result of a system.
#[deprecated = "this form of system adapter has been deprecated in favor of `system.map(...)`"]
pub mod adapter {
use crate::system::In;
use bevy_utils::tracing;
use std::fmt::Debug;
/// Converts a regular function into a system adapter.
///
/// # Examples
/// ```
/// use bevy_ecs::prelude::*;
///
/// fn return1() -> u64 { 1 }
///
/// return1
/// .pipe(system_adapter::new(u32::try_from))
/// .pipe(system_adapter::unwrap)
/// .pipe(print);
///
/// fn print(In(x): In<impl std::fmt::Debug>) {
/// println!("{x:?}");
/// }
/// ```
#[deprecated = "use `.map(...)` instead"]
pub fn new<T, U>(mut f: impl FnMut(T) -> U) -> impl FnMut(In<T>) -> U {
move |In(x)| f(x)
}
/// System adapter that unwraps the `Ok` variant of a [`Result`].
/// This is useful for fallible systems that should panic in the case of an error.
///
/// There is no equivalent adapter for [`Option`]. Instead, it's best to provide
/// an error message and convert to a `Result` using `ok_or{_else}`.
///
/// # Examples
///
/// Panicking on error
///
/// ```
/// use bevy_ecs::prelude::*;
///
/// // Building a new schedule/app...
/// let mut sched = Schedule::default();
/// sched.add_systems(
/// // Panic if the load system returns an error.
/// load_save_system.pipe(system_adapter::unwrap)
/// )
/// // ...
/// # ;
/// # let mut world = World::new();
/// # sched.run(&mut world);
///
/// // A system which may fail irreparably.
/// fn load_save_system() -> Result<(), std::io::Error> {
/// let save_file = open_file("my_save.json")?;
/// dbg!(save_file);
/// Ok(())
/// }
/// # fn open_file(name: &str) -> Result<&'static str, std::io::Error>
/// # { Ok("hello world") }
/// ```
#[deprecated = "use `.map(Result::unwrap)` instead"]
pub fn unwrap<T, E: Debug>(In(res): In<Result<T, E>>) -> T {
res.unwrap()
}
/// System adapter that utilizes the [`bevy_utils::tracing::info!`] macro to print system information.
///
/// # Examples
///
/// ```
/// use bevy_ecs::prelude::*;
///
/// // Building a new schedule/app...
/// let mut sched = Schedule::default();
/// sched.add_systems(
/// // Prints system information.
/// data_pipe_system.pipe(system_adapter::info)
/// )
/// // ...
/// # ;
/// # let mut world = World::new();
/// # sched.run(&mut world);
///
/// // A system that returns a String output.
/// fn data_pipe_system() -> String {
/// "42".to_string()
/// }
/// ```
#[deprecated = "use `.map(bevy_utils::info)` instead"]
pub fn info<T: Debug>(In(data): In<T>) {
tracing::info!("{:?}", data);
}
/// System adapter that utilizes the [`bevy_utils::tracing::debug!`] macro to print the output of a system.
///
/// # Examples
///
/// ```
/// use bevy_ecs::prelude::*;
///
/// // Building a new schedule/app...
/// let mut sched = Schedule::default();
/// sched.add_systems(
/// // Prints debug data from system.
/// parse_message_system.pipe(system_adapter::dbg)
/// )
/// // ...
/// # ;
/// # let mut world = World::new();
/// # sched.run(&mut world);
///
/// // A system that returns a Result<usize, String> output.
/// fn parse_message_system() -> Result<usize, std::num::ParseIntError> {
/// Ok("42".parse()?)
/// }
/// ```
#[deprecated = "use `.map(bevy_utils::dbg)` instead"]
pub fn dbg<T: Debug>(In(data): In<T>) {
tracing::debug!("{:?}", data);
}
/// System adapter that utilizes the [`bevy_utils::tracing::warn!`] macro to print the output of a system.
///
/// # Examples
///
/// ```
/// use bevy_ecs::prelude::*;
///
/// // Building a new schedule/app...
/// # let mut sched = Schedule::default();
/// sched.add_systems(
/// // Prints system warning if system returns an error.
/// warning_pipe_system.pipe(system_adapter::warn)
/// )
/// // ...
/// # ;
/// # let mut world = World::new();
/// # sched.run(&mut world);
///
/// // A system that returns a Result<(), String> output.
/// fn warning_pipe_system() -> Result<(), String> {
/// Err("Got to rusty?".to_string())
/// }
/// ```
#[deprecated = "use `.map(bevy_utils::warn)` instead"]
pub fn warn<E: Debug>(In(res): In<Result<(), E>>) {
if let Err(warn) = res {
tracing::warn!("{:?}", warn);
}
}
/// System adapter that utilizes the [`bevy_utils::tracing::error!`] macro to print the output of a system.
///
/// # Examples
///
/// ```
/// use bevy_ecs::prelude::*;
/// // Building a new schedule/app...
/// let mut sched = Schedule::default();
/// sched.add_systems(
/// // Prints system error if system fails.
/// parse_error_message_system.pipe(system_adapter::error)
/// )
/// // ...
/// # ;
/// # let mut world = World::new();
/// # sched.run(&mut world);
///
/// // A system that returns a Result<())> output.
/// fn parse_error_message_system() -> Result<(), String> {
/// Err("Some error".to_owned())
/// }
/// ```
#[deprecated = "use `.map(bevy_utils::error)` instead"]
pub fn error<E: Debug>(In(res): In<Result<(), E>>) {
if let Err(error) = res {
tracing::error!("{:?}", error);
}
}
/// System adapter that ignores the output of the previous system in a pipe.
/// This is useful for fallible systems that should simply return early in case of an `Err`/`None`.
///
/// # Examples
///
/// Returning early
///
/// ```
/// use bevy_ecs::prelude::*;
///
/// // Marker component for an enemy entity.
/// #[derive(Component)]
/// struct Monster;
///
/// // Building a new schedule/app...
/// # let mut sched = Schedule::default(); sched
/// .add_systems(
/// // If the system fails, just move on and try again next frame.
/// fallible_system.pipe(system_adapter::ignore)
/// )
/// // ...
/// # ;
/// # let mut world = World::new();
/// # sched.run(&mut world);
///
/// // A system which may return early. It's more convenient to use the `?` operator for this.
/// fn fallible_system(
/// q: Query<Entity, With<Monster>>
/// ) -> Option<()> {
/// let monster_id = q.iter().next()?;
/// println!("Monster entity is {monster_id:?}");
/// Some(())
/// }
/// ```
#[deprecated = "use `.map(std::mem::drop)` instead"]
pub fn ignore<T>(In(_): In<T>) {}
}
/// Ensure that a given function is a [system](System).
///
/// This should be used when writing doc examples,
/// to confirm that systems used in an example are
/// valid systems.
///
/// # Examples
///
/// The following example will panic when run since the
/// system's parameters mutably access the same component
/// multiple times.
///
/// ```should_panic
/// # use bevy_ecs::{prelude::*, system::assert_is_system};
/// #
/// # #[derive(Component)]
/// # struct Transform;
/// #
/// fn my_system(query1: Query<&mut Transform>, query2: Query<&mut Transform>) {
/// // ...
/// }
///
/// assert_is_system(my_system);
/// ```
pub fn assert_is_system<In: 'static, Out: 'static, Marker>(
system: impl IntoSystem<In, Out, Marker>,
) {
let mut system = IntoSystem::into_system(system);
// Initialize the system, which will panic if the system has access conflicts.
let mut world = World::new();
system.initialize(&mut world);
}
/// Ensure that a given function is a [read-only system](ReadOnlySystem).
///
/// This should be used when writing doc examples,
/// to confirm that systems used in an example are
/// valid systems.
///
/// # Examples
///
/// The following example will fail to compile
/// since the system accesses a component mutably.
///
/// ```compile_fail
/// # use bevy_ecs::{prelude::*, system::assert_is_read_only_system};
/// #
/// # #[derive(Component)]
/// # struct Transform;
/// #
/// fn my_system(query: Query<&mut Transform>) {
/// // ...
/// }
///
/// assert_is_read_only_system(my_system);
/// ```
pub fn assert_is_read_only_system<In: 'static, Out: 'static, Marker, S>(system: S)
where
S: IntoSystem<In, Out, Marker>,
S::System: ReadOnlySystem,
{
assert_is_system(system);
}
/// Ensures that the provided system doesn't with itself.
///
/// This function will panic if the provided system conflict with itself.
///
/// Note: this will run the system on an empty world.
pub fn assert_system_does_not_conflict<Out, Params, S: IntoSystem<(), Out, Params>>(sys: S) {
let mut world = World::new();
let mut system = IntoSystem::into_system(sys);
system.initialize(&mut world);
system.run((), &mut world);
}
#[cfg(test)]
mod tests {
use std::any::TypeId;
use bevy_utils::default;
use crate::{
self as bevy_ecs,
archetype::{ArchetypeComponentId, Archetypes},
bundle::Bundles,
change_detection::DetectChanges,
component::{Component, Components, Tick},
entity::{Entities, Entity},
prelude::AnyOf,
query::{Added, Changed, Or, With, Without},
removal_detection::RemovedComponents,
schedule::{
apply_deferred, common_conditions::resource_exists, Condition, IntoSystemConfigs,
Schedule,
},
system::{
Commands, In, IntoSystem, Local, NonSend, NonSendMut, ParamSet, Query, Res, ResMut,
Resource, System, SystemState,
},
world::{FromWorld, World},
};
#[derive(Resource, PartialEq, Debug)]
enum SystemRan {
Yes,
No,
}
#[derive(Component, Resource, Debug, Eq, PartialEq, Default)]
struct A;
#[derive(Component, Resource)]
struct B;
#[derive(Component, Resource)]
struct C;
#[derive(Component, Resource)]
struct D;
#[derive(Component, Resource)]
struct E;
#[derive(Component, Resource)]
struct F;
#[derive(Component, Debug)]
struct W<T>(T);
#[test]
fn simple_system() {
fn sys(query: Query<&A>) {
for a in &query {
println!("{a:?}");
}
}
let mut system = IntoSystem::into_system(sys);
let mut world = World::new();
world.spawn(A);
system.initialize(&mut world);
system.run((), &mut world);
}
fn run_system<Marker, S: IntoSystem<(), (), Marker>>(world: &mut World, system: S) {
let mut schedule = Schedule::default();
schedule.add_systems(system);
schedule.run(world);
}
#[test]
fn query_system_gets() {
fn query_system(
mut ran: ResMut<SystemRan>,
entity_query: Query<Entity, With<A>>,
b_query: Query<&B>,
a_c_query: Query<(&A, &C)>,
d_query: Query<&D>,
) {
let entities = entity_query.iter().collect::<Vec<Entity>>();
assert!(
b_query.get_component::<B>(entities[0]).is_err(),
"entity 0 should not have B"
);
assert!(
b_query.get_component::<B>(entities[1]).is_ok(),
"entity 1 should have B"
);
assert!(
b_query.get_component::<A>(entities[1]).is_err(),
"entity 1 should have A, but b_query shouldn't have access to it"
);
assert!(
b_query.get_component::<D>(entities[3]).is_err(),
"entity 3 should have D, but it shouldn't be accessible from b_query"
);
assert!(
b_query.get_component::<C>(entities[2]).is_err(),
"entity 2 has C, but it shouldn't be accessible from b_query"
);
assert!(
a_c_query.get_component::<C>(entities[2]).is_ok(),
"entity 2 has C, and it should be accessible from a_c_query"
);
assert!(
a_c_query.get_component::<D>(entities[3]).is_err(),
"entity 3 should have D, but it shouldn't be accessible from b_query"
);
assert!(
d_query.get_component::<D>(entities[3]).is_ok(),
"entity 3 should have D"
);
*ran = SystemRan::Yes;
}
let mut world = World::default();
world.insert_resource(SystemRan::No);
world.spawn(A);
world.spawn((A, B));
world.spawn((A, C));
world.spawn((A, D));
run_system(&mut world, query_system);
assert_eq!(*world.resource::<SystemRan>(), SystemRan::Yes);
}
#[test]
fn get_many_is_ordered() {
use crate::system::Resource;
const ENTITIES_COUNT: usize = 1000;
#[derive(Resource)]
struct EntitiesArray(Vec<Entity>);
fn query_system(
mut ran: ResMut<SystemRan>,
entities_array: Res<EntitiesArray>,
q: Query<&W<usize>>,
) {
let entities_array: [Entity; ENTITIES_COUNT] =
entities_array.0.clone().try_into().unwrap();
for (i, w) in (0..ENTITIES_COUNT).zip(q.get_many(entities_array).unwrap()) {
assert_eq!(i, w.0);
}
*ran = SystemRan::Yes;
}
fn query_system_mut(
mut ran: ResMut<SystemRan>,
entities_array: Res<EntitiesArray>,
mut q: Query<&mut W<usize>>,
) {
let entities_array: [Entity; ENTITIES_COUNT] =
entities_array.0.clone().try_into().unwrap();
#[allow(unused_mut)]
for (i, mut w) in (0..ENTITIES_COUNT).zip(q.get_many_mut(entities_array).unwrap()) {
assert_eq!(i, w.0);
}
*ran = SystemRan::Yes;
}
let mut world = World::default();
world.insert_resource(SystemRan::No);
let entity_ids = (0..ENTITIES_COUNT)
.map(|i| world.spawn(W(i)).id())
.collect();
world.insert_resource(EntitiesArray(entity_ids));
run_system(&mut world, query_system);
assert_eq!(*world.resource::<SystemRan>(), SystemRan::Yes);
world.insert_resource(SystemRan::No);
run_system(&mut world, query_system_mut);
assert_eq!(*world.resource::<SystemRan>(), SystemRan::Yes);
}
#[test]
fn or_param_set_system() {
// Regression test for issue #762
fn query_system(
mut ran: ResMut<SystemRan>,
mut set: ParamSet<(
Query<(), Or<(Changed<A>, Changed<B>)>>,
Query<(), Or<(Added<A>, Added<B>)>>,
)>,
) {
let changed = set.p0().iter().count();
let added = set.p1().iter().count();
assert_eq!(changed, 1);
assert_eq!(added, 1);
*ran = SystemRan::Yes;
}
let mut world = World::default();
world.insert_resource(SystemRan::No);
world.spawn((A, B));
run_system(&mut world, query_system);
assert_eq!(*world.resource::<SystemRan>(), SystemRan::Yes);
}
#[test]
fn changed_resource_system() {
use crate::system::Resource;
#[derive(Resource)]
struct Flipper(bool);
#[derive(Resource)]
struct Added(usize);
#[derive(Resource)]
struct Changed(usize);
fn incr_e_on_flip(
value: Res<Flipper>,
mut changed: ResMut<Changed>,
mut added: ResMut<Added>,
) {
if value.is_added() {
added.0 += 1;
}
if value.is_changed() {
changed.0 += 1;
}
}
let mut world = World::default();
world.insert_resource(Flipper(false));
world.insert_resource(Added(0));
world.insert_resource(Changed(0));
let mut schedule = Schedule::default();
schedule.add_systems((incr_e_on_flip, apply_deferred, World::clear_trackers).chain());
schedule.run(&mut world);
assert_eq!(world.resource::<Added>().0, 1);
assert_eq!(world.resource::<Changed>().0, 1);
schedule.run(&mut world);
assert_eq!(world.resource::<Added>().0, 1);
assert_eq!(world.resource::<Changed>().0, 1);
world.resource_mut::<Flipper>().0 = true;
schedule.run(&mut world);
assert_eq!(world.resource::<Added>().0, 1);
assert_eq!(world.resource::<Changed>().0, 2);
}
#[test]
#[should_panic = "error[B0001]"]
fn option_has_no_filter_with() {
fn sys(_: Query<(Option<&A>, &mut B)>, _: Query<&mut B, Without<A>>) {}
let mut world = World::default();
run_system(&mut world, sys);
}
#[test]
fn option_doesnt_remove_unrelated_filter_with() {
fn sys(_: Query<(Option<&A>, &mut B, &A)>, _: Query<&mut B, Without<A>>) {}
let mut world = World::default();
run_system(&mut world, sys);
}
#[test]
#[should_panic = "error[B0001]"]
fn any_of_has_no_filter_with() {
fn sys(_: Query<(AnyOf<(&A, ())>, &mut B)>, _: Query<&mut B, Without<A>>) {}
let mut world = World::default();
run_system(&mut world, sys);
}
#[test]
fn any_of_has_filter_with_when_both_have_it() {
fn sys(_: Query<(AnyOf<(&A, &A)>, &mut B)>, _: Query<&mut B, Without<A>>) {}
let mut world = World::default();
run_system(&mut world, sys);
}
#[test]
fn any_of_doesnt_remove_unrelated_filter_with() {
fn sys(_: Query<(AnyOf<(&A, ())>, &mut B, &A)>, _: Query<&mut B, Without<A>>) {}
let mut world = World::default();
run_system(&mut world, sys);
}
#[test]
fn any_of_and_without() {
fn sys(_: Query<(AnyOf<(&A, &B)>, &mut C)>, _: Query<&mut C, (Without<A>, Without<B>)>) {}
let mut world = World::default();
run_system(&mut world, sys);
}
#[test]
#[should_panic = "error[B0001]"]
fn or_has_no_filter_with() {
fn sys(_: Query<&mut B, Or<(With<A>, With<B>)>>, _: Query<&mut B, Without<A>>) {}
let mut world = World::default();
run_system(&mut world, sys);
}
#[test]
fn or_has_filter_with_when_both_have_it() {
fn sys(_: Query<&mut B, Or<(With<A>, With<A>)>>, _: Query<&mut B, Without<A>>) {}
let mut world = World::default();
run_system(&mut world, sys);
}
#[test]
fn or_has_filter_with() {
fn sys(
_: Query<&mut C, Or<(With<A>, With<B>)>>,
_: Query<&mut C, (Without<A>, Without<B>)>,
) {
}
let mut world = World::default();
run_system(&mut world, sys);
}
#[test]
fn or_expanded_with_and_without_common() {
fn sys(_: Query<&mut D, (With<A>, Or<(With<B>, With<C>)>)>, _: Query<&mut D, Without<A>>) {}
let mut world = World::default();
run_system(&mut world, sys);
}
#[test]
fn or_expanded_nested_with_and_without_common() {
fn sys(
_: Query<&mut E, (Or<((With<B>, With<C>), (With<C>, With<D>))>, With<A>)>,
_: Query<&mut E, (Without<B>, Without<D>)>,
) {
}
let mut world = World::default();
run_system(&mut world, sys);
}
#[test]
#[should_panic = "error[B0001]"]
fn or_expanded_nested_with_and_disjoint_without() {
fn sys(
_: Query<&mut E, (Or<((With<B>, With<C>), (With<C>, With<D>))>, With<A>)>,
_: Query<&mut E, Without<D>>,
) {
}
let mut world = World::default();
run_system(&mut world, sys);
}
#[test]
#[should_panic = "error[B0001]"]
fn or_expanded_nested_or_with_and_disjoint_without() {
fn sys(
_: Query<&mut D, Or<(Or<(With<A>, With<B>)>, Or<(With<A>, With<C>)>)>>,
_: Query<&mut D, Without<A>>,
) {
}
let mut world = World::default();
run_system(&mut world, sys);
}
#[test]
fn or_expanded_nested_with_and_common_nested_without() {
fn sys(
_: Query<&mut D, Or<((With<A>, With<B>), (With<B>, With<C>))>>,
_: Query<&mut D, Or<(Without<D>, Without<B>)>>,
) {
}
let mut world = World::default();
run_system(&mut world, sys);
}
#[test]
fn or_with_without_and_compatible_with_without() {
fn sys(
_: Query<&mut C, Or<(With<A>, Without<B>)>>,
_: Query<&mut C, (With<B>, Without<A>)>,
) {
}
let mut world = World::default();
run_system(&mut world, sys);
}
#[test]
#[should_panic = "error[B0001]"]
fn with_and_disjoint_or_empty_without() {
fn sys(_: Query<&mut B, With<A>>, _: Query<&mut B, Or<((), Without<A>)>>) {}
let mut world = World::default();
run_system(&mut world, sys);
}
#[test]
#[should_panic = "error[B0001]"]
fn or_expanded_with_and_disjoint_nested_without() {
fn sys(
_: Query<&mut D, Or<(With<A>, With<B>)>>,
_: Query<&mut D, Or<(Without<A>, Without<B>)>>,
) {
}
let mut world = World::default();
run_system(&mut world, sys);
}
#[test]
#[should_panic = "error[B0001]"]
fn or_expanded_nested_with_and_disjoint_nested_without() {
fn sys(
_: Query<&mut D, Or<((With<A>, With<B>), (With<B>, With<C>))>>,
_: Query<&mut D, Or<(Without<A>, Without<B>)>>,
) {
}
let mut world = World::default();
run_system(&mut world, sys);
}
#[test]
fn or_doesnt_remove_unrelated_filter_with() {
fn sys(_: Query<&mut B, (Or<(With<A>, With<B>)>, With<A>)>, _: Query<&mut B, Without<A>>) {}
let mut world = World::default();
run_system(&mut world, sys);
}
#[test]
#[should_panic]
fn conflicting_query_mut_system() {
fn sys(_q1: Query<&mut A>, _q2: Query<&mut A>) {}
let mut world = World::default();
run_system(&mut world, sys);
}
#[test]
fn disjoint_query_mut_system() {
fn sys(_q1: Query<&mut A, With<B>>, _q2: Query<&mut A, Without<B>>) {}
let mut world = World::default();
run_system(&mut world, sys);
}
#[test]
fn disjoint_query_mut_read_component_system() {
fn sys(_q1: Query<(&mut A, &B)>, _q2: Query<&mut A, Without<B>>) {}
let mut world = World::default();
run_system(&mut world, sys);
}
#[test]
#[should_panic]
fn conflicting_query_immut_system() {
fn sys(_q1: Query<&A>, _q2: Query<&mut A>) {}
let mut world = World::default();
run_system(&mut world, sys);
}
#[test]
fn query_set_system() {
fn sys(mut _set: ParamSet<(Query<&mut A>, Query<&A>)>) {}
let mut world = World::default();
run_system(&mut world, sys);
}
#[test]
#[should_panic]
fn conflicting_query_with_query_set_system() {
fn sys(_query: Query<&mut A>, _set: ParamSet<(Query<&mut A>, Query<&B>)>) {}
let mut world = World::default();
run_system(&mut world, sys);
}
#[test]
#[should_panic]
fn conflicting_query_sets_system() {
fn sys(_set_1: ParamSet<(Query<&mut A>,)>, _set_2: ParamSet<(Query<&mut A>, Query<&B>)>) {}
let mut world = World::default();
run_system(&mut world, sys);
}
#[derive(Default, Resource)]
struct BufferRes {
_buffer: Vec<u8>,
}
fn test_for_conflicting_resources<Marker, S: IntoSystem<(), (), Marker>>(sys: S) {
let mut world = World::default();
world.insert_resource(BufferRes::default());
world.insert_resource(A);
world.insert_resource(B);
run_system(&mut world, sys);
}
#[test]
#[should_panic]
fn conflicting_system_resources() {
fn sys(_: ResMut<BufferRes>, _: Res<BufferRes>) {}
test_for_conflicting_resources(sys);
}
#[test]
#[should_panic]
fn conflicting_system_resources_reverse_order() {
fn sys(_: Res<BufferRes>, _: ResMut<BufferRes>) {}
test_for_conflicting_resources(sys);
}
#[test]
#[should_panic]
fn conflicting_system_resources_multiple_mutable() {
fn sys(_: ResMut<BufferRes>, _: ResMut<BufferRes>) {}
test_for_conflicting_resources(sys);
}
#[test]
fn nonconflicting_system_resources() {
fn sys(_: Local<BufferRes>, _: ResMut<BufferRes>, _: Local<A>, _: ResMut<A>) {}
test_for_conflicting_resources(sys);
}
#[test]
fn local_system() {
let mut world = World::default();
world.insert_resource(ProtoFoo { value: 1 });
world.insert_resource(SystemRan::No);
struct Foo {
value: u32,
}
#[derive(Resource)]
struct ProtoFoo {
value: u32,
}
impl FromWorld for Foo {
fn from_world(world: &mut World) -> Self {
Foo {
value: world.resource::<ProtoFoo>().value + 1,
}
}
}
fn sys(local: Local<Foo>, mut system_ran: ResMut<SystemRan>) {
assert_eq!(local.value, 2);
*system_ran = SystemRan::Yes;
}
run_system(&mut world, sys);
// ensure the system actually ran
assert_eq!(*world.resource::<SystemRan>(), SystemRan::Yes);
}
#[test]
fn non_send_option_system() {
let mut world = World::default();
world.insert_resource(SystemRan::No);
struct NotSend1(std::rc::Rc<i32>);
struct NotSend2(std::rc::Rc<i32>);
world.insert_non_send_resource(NotSend1(std::rc::Rc::new(0)));
fn sys(
op: Option<NonSend<NotSend1>>,
mut _op2: Option<NonSendMut<NotSend2>>,
mut system_ran: ResMut<SystemRan>,
) {
op.expect("NonSend should exist");
*system_ran = SystemRan::Yes;
}
run_system(&mut world, sys);
// ensure the system actually ran
assert_eq!(*world.resource::<SystemRan>(), SystemRan::Yes);
}
#[test]
fn non_send_system() {
let mut world = World::default();
world.insert_resource(SystemRan::No);
struct NotSend1(std::rc::Rc<i32>);
struct NotSend2(std::rc::Rc<i32>);
world.insert_non_send_resource(NotSend1(std::rc::Rc::new(1)));
world.insert_non_send_resource(NotSend2(std::rc::Rc::new(2)));
fn sys(
_op: NonSend<NotSend1>,
mut _op2: NonSendMut<NotSend2>,
mut system_ran: ResMut<SystemRan>,
) {
*system_ran = SystemRan::Yes;
}
run_system(&mut world, sys);
assert_eq!(*world.resource::<SystemRan>(), SystemRan::Yes);
}
#[test]
fn removal_tracking() {
let mut world = World::new();
let entity_to_despawn = world.spawn(W(1)).id();
let entity_to_remove_w_from = world.spawn(W(2)).id();
let spurious_entity = world.spawn_empty().id();
// Track which entities we want to operate on
#[derive(Resource)]
struct Despawned(Entity);
world.insert_resource(Despawned(entity_to_despawn));
#[derive(Resource)]
struct Removed(Entity);
world.insert_resource(Removed(entity_to_remove_w_from));
// Verify that all the systems actually ran
#[derive(Default, Resource)]
struct NSystems(usize);
world.insert_resource(NSystems::default());
// First, check that removal detection is triggered if and only if we despawn an entity with the correct component
world.entity_mut(entity_to_despawn).despawn();
world.entity_mut(spurious_entity).despawn();
fn validate_despawn(
mut removed_i32: RemovedComponents<W<i32>>,
despawned: Res<Despawned>,
mut n_systems: ResMut<NSystems>,
) {
assert_eq!(
removed_i32.read().collect::<Vec<_>>(),
&[despawned.0],
"despawning causes the correct entity to show up in the 'RemovedComponent' system parameter."
);
n_systems.0 += 1;
}
run_system(&mut world, validate_despawn);
// Reset the trackers to clear the buffer of removed components
// Ordinarily, this is done in a system added by MinimalPlugins
world.clear_trackers();
// Then, try removing a component
world.spawn(W(3));
world.spawn(W(4));
world.entity_mut(entity_to_remove_w_from).remove::<W<i32>>();
fn validate_remove(
mut removed_i32: RemovedComponents<W<i32>>,
despawned: Res<Despawned>,
removed: Res<Removed>,
mut n_systems: ResMut<NSystems>,
) {
// The despawned entity from the previous frame was
// double buffered so we now have it in this system as well.
assert_eq!(
removed_i32.read().collect::<Vec<_>>(),
&[despawned.0, removed.0],
"removing a component causes the correct entity to show up in the 'RemovedComponent' system parameter."
);
n_systems.0 += 1;
}
run_system(&mut world, validate_remove);
// Verify that both systems actually ran
assert_eq!(world.resource::<NSystems>().0, 2);
}
#[test]
fn world_collections_system() {
let mut world = World::default();
world.insert_resource(SystemRan::No);
world.spawn((W(42), W(true)));
fn sys(
archetypes: &Archetypes,
components: &Components,
entities: &Entities,
bundles: &Bundles,
query: Query<Entity, With<W<i32>>>,
mut system_ran: ResMut<SystemRan>,
) {
assert_eq!(query.iter().count(), 1, "entity exists");
for entity in &query {
let location = entities.get(entity).unwrap();
let archetype = archetypes.get(location.archetype_id).unwrap();
let archetype_components = archetype.components().collect::<Vec<_>>();
let bundle_id = bundles
.get_id(std::any::TypeId::of::<(W<i32>, W<bool>)>())
.expect("Bundle used to spawn entity should exist");
let bundle_info = bundles.get(bundle_id).unwrap();
let mut bundle_components = bundle_info.components().to_vec();
bundle_components.sort();
for component_id in &bundle_components {
assert!(
components.get_info(*component_id).is_some(),
"every bundle component exists in Components"
);
}
assert_eq!(
bundle_components, archetype_components,
"entity's bundle components exactly match entity's archetype components"
);
}
*system_ran = SystemRan::Yes;
}
run_system(&mut world, sys);
// ensure the system actually ran
assert_eq!(*world.resource::<SystemRan>(), SystemRan::Yes);
}
#[test]
fn get_system_conflicts() {
fn sys_x(_: Res<A>, _: Res<B>, _: Query<(&C, &D)>) {}
fn sys_y(_: Res<A>, _: ResMut<B>, _: Query<(&C, &mut D)>) {}
let mut world = World::default();
let mut x = IntoSystem::into_system(sys_x);
let mut y = IntoSystem::into_system(sys_y);
x.initialize(&mut world);
y.initialize(&mut world);
let conflicts = x.component_access().get_conflicts(y.component_access());
let b_id = world
.components()
.get_resource_id(TypeId::of::<B>())
.unwrap();
let d_id = world.components().get_id(TypeId::of::<D>()).unwrap();
assert_eq!(conflicts, vec![b_id, d_id]);
}
#[test]
fn query_is_empty() {
fn without_filter(not_empty: Query<&A>, empty: Query<&B>) {
assert!(!not_empty.is_empty());
assert!(empty.is_empty());
}
fn with_filter(not_empty: Query<&A, With<C>>, empty: Query<&A, With<D>>) {
assert!(!not_empty.is_empty());
assert!(empty.is_empty());
}
let mut world = World::default();
world.spawn(A).insert(C);
let mut without_filter = IntoSystem::into_system(without_filter);
without_filter.initialize(&mut world);
without_filter.run((), &mut world);
let mut with_filter = IntoSystem::into_system(with_filter);
with_filter.initialize(&mut world);
with_filter.run((), &mut world);
}
#[test]
#[allow(clippy::too_many_arguments)]
fn can_have_16_parameters() {
fn sys_x(
_: Res<A>,
_: Res<B>,
_: Res<C>,
_: Res<D>,
_: Res<E>,
_: Res<F>,
_: Query<&A>,
_: Query<&B>,
_: Query<&C>,
_: Query<&D>,
_: Query<&E>,
_: Query<&F>,
_: Query<(&A, &B)>,
_: Query<(&C, &D)>,
_: Query<(&E, &F)>,
) {
}
fn sys_y(
_: (
Res<A>,
Res<B>,
Res<C>,
Res<D>,
Res<E>,
Res<F>,
Query<&A>,
Query<&B>,
Query<&C>,
Query<&D>,
Query<&E>,
Query<&F>,
Query<(&A, &B)>,
Query<(&C, &D)>,
Query<(&E, &F)>,
),
) {
}
let mut world = World::default();
let mut x = IntoSystem::into_system(sys_x);
let mut y = IntoSystem::into_system(sys_y);
x.initialize(&mut world);
y.initialize(&mut world);
}
#[test]
fn read_system_state() {
#[derive(Eq, PartialEq, Debug, Resource)]
struct A(usize);
#[derive(Component, Eq, PartialEq, Debug)]
struct B(usize);
let mut world = World::default();
world.insert_resource(A(42));
world.spawn(B(7));
let mut system_state: SystemState<(Res<A>, Query<&B>, ParamSet<(Query<&C>, Query<&D>)>)> =
SystemState::new(&mut world);
let (a, query, _) = system_state.get(&world);
assert_eq!(*a, A(42), "returned resource matches initial value");
assert_eq!(
*query.single(),
B(7),
"returned component matches initial value"
);
}
#[test]
fn write_system_state() {
#[derive(Resource, Eq, PartialEq, Debug)]
struct A(usize);
#[derive(Component, Eq, PartialEq, Debug)]
struct B(usize);
let mut world = World::default();
world.insert_resource(A(42));
world.spawn(B(7));
let mut system_state: SystemState<(ResMut<A>, Query<&mut B>)> =
SystemState::new(&mut world);
// The following line shouldn't compile because the parameters used are not ReadOnlySystemParam
// let (a, query) = system_state.get(&world);
let (a, mut query) = system_state.get_mut(&mut world);
assert_eq!(*a, A(42), "returned resource matches initial value");
assert_eq!(
*query.single_mut(),
B(7),
"returned component matches initial value"
);
}
#[test]
fn system_state_change_detection() {
#[derive(Component, Eq, PartialEq, Debug)]
struct A(usize);
let mut world = World::default();
let entity = world.spawn(A(1)).id();
let mut system_state: SystemState<Query<&A, Changed<A>>> = SystemState::new(&mut world);
{
let query = system_state.get(&world);
assert_eq!(*query.single(), A(1));
}
{
let query = system_state.get(&world);
assert!(query.get_single().is_err());
}
world.entity_mut(entity).get_mut::<A>().unwrap().0 = 2;
{
let query = system_state.get(&world);
assert_eq!(*query.single(), A(2));
}
}
#[test]
#[should_panic]
fn system_state_invalid_world() {
let mut world = World::default();
let mut system_state = SystemState::<Query<&A>>::new(&mut world);
let mismatched_world = World::default();
system_state.get(&mismatched_world);
}
#[test]
fn system_state_archetype_update() {
#[derive(Component, Eq, PartialEq, Debug)]
struct A(usize);
#[derive(Component, Eq, PartialEq, Debug)]
struct B(usize);
let mut world = World::default();
world.spawn(A(1));
let mut system_state = SystemState::<Query<&A>>::new(&mut world);
{
let query = system_state.get(&world);
assert_eq!(
query.iter().collect::<Vec<_>>(),
vec![&A(1)],
"exactly one component returned"
);
}
world.spawn((A(2), B(2)));
{
let query = system_state.get(&world);
assert_eq!(
query.iter().collect::<Vec<_>>(),
vec![&A(1), &A(2)],
"components from both archetypes returned"
);
}
}
/// this test exists to show that read-only world-only queries can return data that lives as long as 'world
#[test]
#[allow(unused)]
fn long_life_test() {
struct Holder<'w> {
value: &'w A,
}
struct State {
state: SystemState<Res<'static, A>>,
state_q: SystemState<Query<'static, 'static, &'static A>>,
}
impl State {
fn hold_res<'w>(&mut self, world: &'w World) -> Holder<'w> {
let a = self.state.get(world);
Holder {
value: a.into_inner(),
}
}
fn hold_component<'w>(&mut self, world: &'w World, entity: Entity) -> Holder<'w> {
let q = self.state_q.get(world);
let a = q.get_inner(entity).unwrap();
Holder { value: a }
}
fn hold_components<'w>(&mut self, world: &'w World) -> Vec<Holder<'w>> {
let mut components = Vec::new();
let q = self.state_q.get(world);
for a in q.iter_inner() {
components.push(Holder { value: a });
}
components
}
}
}
#[test]
fn immutable_mut_test() {
#[derive(Component, Eq, PartialEq, Debug, Clone, Copy)]
struct A(usize);
let mut world = World::default();
world.spawn(A(1));
world.spawn(A(2));
let mut system_state = SystemState::<Query<&mut A>>::new(&mut world);
{
let mut query = system_state.get_mut(&mut world);
assert_eq!(
query.iter_mut().map(|m| *m).collect::<Vec<A>>(),
vec![A(1), A(2)],
"both components returned by iter_mut of &mut"
);
assert_eq!(
query.iter().collect::<Vec<&A>>(),
vec![&A(1), &A(2)],
"both components returned by iter of &mut"
);
}
}
#[test]
fn convert_mut_to_immut() {
{
let mut world = World::new();
fn mutable_query(mut query: Query<&mut A>) {
for _ in &mut query {}
immutable_query(query.to_readonly());
}
fn immutable_query(_: Query<&A>) {}
let mut sys = IntoSystem::into_system(mutable_query);
sys.initialize(&mut world);
}
{
let mut world = World::new();
fn mutable_query(mut query: Query<Option<&mut A>>) {
for _ in &mut query {}
immutable_query(query.to_readonly());
}
fn immutable_query(_: Query<Option<&A>>) {}
let mut sys = IntoSystem::into_system(mutable_query);
sys.initialize(&mut world);
}
{
let mut world = World::new();
fn mutable_query(mut query: Query<(&mut A, &B)>) {
for _ in &mut query {}
immutable_query(query.to_readonly());
}
fn immutable_query(_: Query<(&A, &B)>) {}
let mut sys = IntoSystem::into_system(mutable_query);
sys.initialize(&mut world);
}
{
let mut world = World::new();
fn mutable_query(mut query: Query<(&mut A, &mut B)>) {
for _ in &mut query {}
immutable_query(query.to_readonly());
}
fn immutable_query(_: Query<(&A, &B)>) {}
let mut sys = IntoSystem::into_system(mutable_query);
sys.initialize(&mut world);
}
{
let mut world = World::new();
fn mutable_query(mut query: Query<(&mut A, &mut B), With<C>>) {
for _ in &mut query {}
immutable_query(query.to_readonly());
}
fn immutable_query(_: Query<(&A, &B), With<C>>) {}
let mut sys = IntoSystem::into_system(mutable_query);
sys.initialize(&mut world);
}
{
let mut world = World::new();
fn mutable_query(mut query: Query<(&mut A, &mut B), Without<C>>) {
for _ in &mut query {}
immutable_query(query.to_readonly());
}
fn immutable_query(_: Query<(&A, &B), Without<C>>) {}
let mut sys = IntoSystem::into_system(mutable_query);
sys.initialize(&mut world);
}
{
let mut world = World::new();
fn mutable_query(mut query: Query<(&mut A, &mut B), Added<C>>) {
for _ in &mut query {}
immutable_query(query.to_readonly());
}
fn immutable_query(_: Query<(&A, &B), Added<C>>) {}
let mut sys = IntoSystem::into_system(mutable_query);
sys.initialize(&mut world);
}
{
let mut world = World::new();
fn mutable_query(mut query: Query<(&mut A, &mut B), Changed<C>>) {
for _ in &mut query {}
immutable_query(query.to_readonly());
}
fn immutable_query(_: Query<(&A, &B), Changed<C>>) {}
let mut sys = IntoSystem::into_system(mutable_query);
sys.initialize(&mut world);
}
}
#[test]
fn update_archetype_component_access_works() {
use std::collections::HashSet;
fn a_not_b_system(_query: Query<&A, Without<B>>) {}
let mut world = World::default();
let mut system = IntoSystem::into_system(a_not_b_system);
let mut expected_ids = HashSet::<ArchetypeComponentId>::new();
let a_id = world.init_component::<A>();
// set up system and verify its access is empty
system.initialize(&mut world);
system.update_archetype_component_access(world.as_unsafe_world_cell());
assert_eq!(
system
.archetype_component_access()
.reads()
.collect::<HashSet<_>>(),
expected_ids
);
// add some entities with archetypes that should match and save their ids
expected_ids.insert(
world
.spawn(A)
.archetype()
.get_archetype_component_id(a_id)
.unwrap(),
);
expected_ids.insert(
world
.spawn((A, C))
.archetype()
.get_archetype_component_id(a_id)
.unwrap(),
);
// add some entities with archetypes that should not match
world.spawn((A, B));
world.spawn((B, C));
// update system and verify its accesses are correct
system.update_archetype_component_access(world.as_unsafe_world_cell());
assert_eq!(
system
.archetype_component_access()
.reads()
.collect::<HashSet<_>>(),
expected_ids
);
// one more round
expected_ids.insert(
world
.spawn((A, D))
.archetype()
.get_archetype_component_id(a_id)
.unwrap(),
);
world.spawn((A, B, D));
system.update_archetype_component_access(world.as_unsafe_world_cell());
assert_eq!(
system
.archetype_component_access()
.reads()
.collect::<HashSet<_>>(),
expected_ids
);
}
#[test]
fn commands_param_set() {
// Regression test for #4676
let mut world = World::new();
let entity = world.spawn_empty().id();
run_system(
&mut world,
move |mut commands_set: ParamSet<(Commands, Commands)>| {
commands_set.p0().entity(entity).insert(A);
commands_set.p1().entity(entity).insert(B);
},
);
let entity = world.entity(entity);
assert!(entity.contains::<A>());
assert!(entity.contains::<B>());
}
#[test]
fn into_iter_impl() {
let mut world = World::new();
world.spawn(W(42u32));
run_system(&mut world, |mut q: Query<&mut W<u32>>| {
for mut a in &mut q {
assert_eq!(a.0, 42);
a.0 = 0;
}
for a in &q {
assert_eq!(a.0, 0);
}
});
}
#[test]
fn readonly_query_get_mut_component_fails() {
use crate::query::QueryComponentError;
let mut world = World::new();
let entity = world.spawn(W(42u32)).id();
run_system(&mut world, move |q: Query<&mut W<u32>>| {
let mut rq = q.to_readonly();
assert_eq!(
QueryComponentError::MissingWriteAccess,
rq.get_component_mut::<W<u32>>(entity).unwrap_err(),
);
});
}
#[test]
#[should_panic = "Encountered a mismatched World."]
fn query_validates_world_id() {
let mut world1 = World::new();
let world2 = World::new();
let qstate = world1.query::<()>();
// SAFETY: doesnt access anything
let query = unsafe {
Query::new(
world2.as_unsafe_world_cell_readonly(),
&qstate,
Tick::new(0),
Tick::new(0),
false,
)
};
query.iter();
}
#[test]
#[should_panic]
fn assert_system_does_not_conflict() {
fn system(_query: Query<(&mut W<u32>, &mut W<u32>)>) {}
super::assert_system_does_not_conflict(system);
}
#[test]
#[should_panic]
fn panic_inside_system() {
let mut world = World::new();
run_system(&mut world, || panic!("this system panics"));
}
#[test]
fn assert_systems() {
use std::str::FromStr;
use crate::{prelude::*, system::assert_is_system};
/// Mocks a system that returns a value of type `T`.
fn returning<T>() -> T {
unimplemented!()
}
/// Mocks an exclusive system that takes an input and returns an output.
fn exclusive_in_out<A, B>(_: In<A>, _: &mut World) -> B {
unimplemented!()
}
fn not(In(val): In<bool>) -> bool {
!val
}
assert_is_system(returning::<Result<u32, std::io::Error>>.map(Result::unwrap));
assert_is_system(returning::<Option<()>>.map(std::mem::drop));
assert_is_system(returning::<&str>.map(u64::from_str).map(Result::unwrap));
assert_is_system(exclusive_in_out::<(), Result<(), std::io::Error>>.map(bevy_utils::error));
assert_is_system(returning::<bool>.pipe(exclusive_in_out::<bool, ()>));
returning::<()>.run_if(returning::<bool>.pipe(not));
}
#[test]
fn pipe_change_detection() {
#[derive(Resource, Default)]
struct Flag;
#[derive(Default)]
struct Info {
// If true, the respective system will mutate `Flag`.
do_first: bool,
do_second: bool,
// Will be set to true if the respective system saw that `Flag` changed.
first_flag: bool,
second_flag: bool,
}
fn first(In(mut info): In<Info>, mut flag: ResMut<Flag>) -> Info {
if flag.is_changed() {
info.first_flag = true;
}
if info.do_first {
*flag = Flag;
}
info
}
fn second(In(mut info): In<Info>, mut flag: ResMut<Flag>) -> Info {
if flag.is_changed() {
info.second_flag = true;
}
if info.do_second {
*flag = Flag;
}
info
}
let mut world = World::new();
world.init_resource::<Flag>();
let mut sys = first.pipe(second);
sys.initialize(&mut world);
sys.run(default(), &mut world);
// The second system should observe a change made in the first system.
let info = sys.run(
Info {
do_first: true,
..default()
},
&mut world,
);
assert!(!info.first_flag);
assert!(info.second_flag);
// When a change is made in the second system, the first system
// should observe it the next time they are run.
let info1 = sys.run(
Info {
do_second: true,
..default()
},
&mut world,
);
let info2 = sys.run(default(), &mut world);
assert!(!info1.first_flag);
assert!(!info1.second_flag);
assert!(info2.first_flag);
assert!(!info2.second_flag);
}
#[test]
fn test_combinator_clone() {
let mut world = World::new();
#[derive(Resource)]
struct A;
#[derive(Resource)]
struct B;
#[derive(Resource, PartialEq, Eq, Debug)]
struct C(i32);
world.insert_resource(A);
world.insert_resource(C(0));
let mut sched = Schedule::default();
sched.add_systems(
(
(|mut res: ResMut<C>| {
res.0 += 1;
}),
(|mut res: ResMut<C>| {
res.0 += 2;
}),
)
.distributive_run_if(resource_exists::<A>().or_else(resource_exists::<B>())),
);
sched.initialize(&mut world).unwrap();
sched.run(&mut world);
assert_eq!(world.get_resource(), Some(&C(3)));
}
}