bevy/examples/games/breakout.rs
Alice Cecile 206c7ce219 Migrate engine to Schedule v3 (#7267)
Huge thanks to @maniwani, @devil-ira, @hymm, @cart, @superdump and @jakobhellermann for the help with this PR.

# Objective

- Followup #6587.
- Minimal integration for the Stageless Scheduling RFC: https://github.com/bevyengine/rfcs/pull/45

## Solution

- [x]  Remove old scheduling module
- [x] Migrate new methods to no longer use extension methods
- [x] Fix compiler errors
- [x] Fix benchmarks
- [x] Fix examples
- [x] Fix docs
- [x] Fix tests

## Changelog

### Added

- a large number of methods on `App` to work with schedules ergonomically
- the `CoreSchedule` enum
- `App::add_extract_system` via the `RenderingAppExtension` trait extension method
- the private `prepare_view_uniforms` system now has a public system set for scheduling purposes, called `ViewSet::PrepareUniforms`

### Removed

- stages, and all code that mentions stages
- states have been dramatically simplified, and no longer use a stack
- `RunCriteriaLabel`
- `AsSystemLabel` trait
- `on_hierarchy_reports_enabled` run criteria (now just uses an ad hoc resource checking run condition)
- systems in `RenderSet/Stage::Extract` no longer warn when they do not read data from the main world
- `RunCriteriaLabel`
- `transform_propagate_system_set`: this was a nonstandard pattern that didn't actually provide enough control. The systems are already `pub`: the docs have been updated to ensure that the third-party usage is clear.

### Changed

- `System::default_labels` is now `System::default_system_sets`.
- `App::add_default_labels` is now `App::add_default_sets`
- `CoreStage` and `StartupStage` enums are now `CoreSet` and `StartupSet`
- `App::add_system_set` was renamed to `App::add_systems`
- The `StartupSchedule` label is now defined as part of the `CoreSchedules` enum
-  `.label(SystemLabel)` is now referred to as `.in_set(SystemSet)`
- `SystemLabel` trait was replaced by `SystemSet`
- `SystemTypeIdLabel<T>` was replaced by `SystemSetType<T>`
- The `ReportHierarchyIssue` resource now has a public constructor (`new`), and implements `PartialEq`
- Fixed time steps now use a schedule (`CoreSchedule::FixedTimeStep`) rather than a run criteria.
- Adding rendering extraction systems now panics rather than silently failing if no subapp with the `RenderApp` label is found.
- the `calculate_bounds` system, with the `CalculateBounds` label, is now in `CoreSet::Update`, rather than in `CoreSet::PostUpdate` before commands are applied. 
- `SceneSpawnerSystem` now runs under `CoreSet::Update`, rather than `CoreStage::PreUpdate.at_end()`.
- `bevy_pbr::add_clusters` is no longer an exclusive system
- the top level `bevy_ecs::schedule` module was replaced with `bevy_ecs::scheduling`
- `tick_global_task_pools_on_main_thread` is no longer run as an exclusive system. Instead, it has been replaced by `tick_global_task_pools`, which uses a `NonSend` resource to force running on the main thread.

## Migration Guide

- Calls to `.label(MyLabel)` should be replaced with `.in_set(MySet)`
- Stages have been removed. Replace these with system sets, and then add command flushes using the `apply_system_buffers` exclusive system where needed.
- The `CoreStage`, `StartupStage, `RenderStage` and `AssetStage`  enums have been replaced with `CoreSet`, `StartupSet, `RenderSet` and `AssetSet`. The same scheduling guarantees have been preserved.
  - Systems are no longer added to `CoreSet::Update` by default. Add systems manually if this behavior is needed, although you should consider adding your game logic systems to `CoreSchedule::FixedTimestep` instead for more reliable framerate-independent behavior.
  - Similarly, startup systems are no longer part of `StartupSet::Startup` by default. In most cases, this won't matter to you.
  - For example, `add_system_to_stage(CoreStage::PostUpdate, my_system)` should be replaced with 
  - `add_system(my_system.in_set(CoreSet::PostUpdate)`
- When testing systems or otherwise running them in a headless fashion, simply construct and run a schedule using `Schedule::new()` and `World::run_schedule` rather than constructing stages
- Run criteria have been renamed to run conditions. These can now be combined with each other and with states.
- Looping run criteria and state stacks have been removed. Use an exclusive system that runs a schedule if you need this level of control over system control flow.
- For app-level control flow over which schedules get run when (such as for rollback networking), create your own schedule and insert it under the `CoreSchedule::Outer` label.
- Fixed timesteps are now evaluated in a schedule, rather than controlled via run criteria. The `run_fixed_timestep` system runs this schedule between `CoreSet::First` and `CoreSet::PreUpdate` by default.
- Command flush points introduced by `AssetStage` have been removed. If you were relying on these, add them back manually.
- Adding extract systems is now typically done directly on the main app. Make sure the `RenderingAppExtension` trait is in scope, then call `app.add_extract_system(my_system)`.
- the `calculate_bounds` system, with the `CalculateBounds` label, is now in `CoreSet::Update`, rather than in `CoreSet::PostUpdate` before commands are applied. You may need to order your movement systems to occur before this system in order to avoid system order ambiguities in culling behavior.
- the `RenderLabel` `AppLabel` was renamed to `RenderApp` for clarity
- `App::add_state` now takes 0 arguments: the starting state is set based on the `Default` impl.
- Instead of creating `SystemSet` containers for systems that run in stages, simply use `.on_enter::<State::Variant>()` or its `on_exit` or `on_update` siblings.
- `SystemLabel` derives should be replaced with `SystemSet`. You will also need to add the `Debug`, `PartialEq`, `Eq`, and `Hash` traits to satisfy the new trait bounds.
- `with_run_criteria` has been renamed to `run_if`. Run criteria have been renamed to run conditions for clarity, and should now simply return a bool.
- States have been dramatically simplified: there is no longer a "state stack". To queue a transition to the next state, call `NextState::set`

## TODO

- [x] remove dead methods on App and World
- [x] add `App::add_system_to_schedule` and `App::add_systems_to_schedule`
- [x] avoid adding the default system set at inappropriate times
- [x] remove any accidental cycles in the default plugins schedule
- [x] migrate benchmarks
- [x] expose explicit labels for the built-in command flush points
- [x] migrate engine code
- [x] remove all mentions of stages from the docs
- [x] verify docs for States
- [x] fix uses of exclusive systems that use .end / .at_start / .before_commands
- [x] migrate RenderStage and AssetStage
- [x] migrate examples
- [x] ensure that transform propagation is exported in a sufficiently public way (the systems are already pub)
- [x] ensure that on_enter schedules are run at least once before the main app
- [x] re-enable opt-in to execution order ambiguities
- [x] revert change to `update_bounds` to ensure it runs in `PostUpdate`
- [x] test all examples
  - [x] unbreak directional lights
  - [x] unbreak shadows (see 3d_scene, 3d_shape, lighting, transparaency_3d examples)
  - [x] game menu example shows loading screen and menu simultaneously
  - [x] display settings menu is a blank screen
  - [x] `without_winit` example panics
- [x] ensure all tests pass
  - [x] SubApp doc test fails
  - [x] runs_spawn_local tasks fails
  - [x] [Fix panic_when_hierachy_cycle test hanging](https://github.com/alice-i-cecile/bevy/pull/120)

## Points of Difficulty and Controversy

**Reviewers, please give feedback on these and look closely**

1.  Default sets, from the RFC, have been removed. These added a tremendous amount of implicit complexity and result in hard to debug scheduling errors. They're going to be tackled in the form of "base sets" by @cart in a followup.
2. The outer schedule controls which schedule is run when `App::update` is called.
3. I implemented `Label for `Box<dyn Label>` for our label types. This enables us to store schedule labels in concrete form, and then later run them. I ran into the same set of problems when working with one-shot systems. We've previously investigated this pattern in depth, and it does not appear to lead to extra indirection with nested boxes.
4. `SubApp::update` simply runs the default schedule once. This sucks, but this whole API is incomplete and this was the minimal changeset.
5. `time_system` and `tick_global_task_pools_on_main_thread` no longer use exclusive systems to attempt to force scheduling order
6. Implemetnation strategy for fixed timesteps
7. `AssetStage` was migrated to `AssetSet` without reintroducing command flush points. These did not appear to be used, and it's nice to remove these bottlenecks.
8. Migration of `bevy_render/lib.rs` and pipelined rendering. The logic here is unusually tricky, as we have complex scheduling requirements.

## Future Work (ideally before 0.10)

- Rename schedule_v3 module to schedule or scheduling
- Add a derive macro to states, and likely a `EnumIter` trait of some form
- Figure out what exactly to do with the "systems added should basically work by default" problem
- Improve ergonomics for working with fixed timesteps and states
- Polish FixedTime API to match Time
- Rebase and merge #7415
- Resolve all internal ambiguities (blocked on better tools, especially #7442)
- Add "base sets" to replace the removed default sets.
2023-02-06 02:04:50 +00:00

422 lines
14 KiB
Rust

//! A simplified implementation of the classic game "Breakout".
use bevy::{
prelude::*,
sprite::collide_aabb::{collide, Collision},
sprite::MaterialMesh2dBundle,
};
// Defines the amount of time that should elapse between each physics step.
const TIME_STEP: f32 = 1.0 / 60.0;
// These constants are defined in `Transform` units.
// Using the default 2D camera they correspond 1:1 with screen pixels.
const PADDLE_SIZE: Vec3 = Vec3::new(120.0, 20.0, 0.0);
const GAP_BETWEEN_PADDLE_AND_FLOOR: f32 = 60.0;
const PADDLE_SPEED: f32 = 500.0;
// How close can the paddle get to the wall
const PADDLE_PADDING: f32 = 10.0;
// We set the z-value of the ball to 1 so it renders on top in the case of overlapping sprites.
const BALL_STARTING_POSITION: Vec3 = Vec3::new(0.0, -50.0, 1.0);
const BALL_SIZE: Vec3 = Vec3::new(30.0, 30.0, 0.0);
const BALL_SPEED: f32 = 400.0;
const INITIAL_BALL_DIRECTION: Vec2 = Vec2::new(0.5, -0.5);
const WALL_THICKNESS: f32 = 10.0;
// x coordinates
const LEFT_WALL: f32 = -450.;
const RIGHT_WALL: f32 = 450.;
// y coordinates
const BOTTOM_WALL: f32 = -300.;
const TOP_WALL: f32 = 300.;
const BRICK_SIZE: Vec2 = Vec2::new(100., 30.);
// These values are exact
const GAP_BETWEEN_PADDLE_AND_BRICKS: f32 = 270.0;
const GAP_BETWEEN_BRICKS: f32 = 5.0;
// These values are lower bounds, as the number of bricks is computed
const GAP_BETWEEN_BRICKS_AND_CEILING: f32 = 20.0;
const GAP_BETWEEN_BRICKS_AND_SIDES: f32 = 20.0;
const SCOREBOARD_FONT_SIZE: f32 = 40.0;
const SCOREBOARD_TEXT_PADDING: Val = Val::Px(5.0);
const BACKGROUND_COLOR: Color = Color::rgb(0.9, 0.9, 0.9);
const PADDLE_COLOR: Color = Color::rgb(0.3, 0.3, 0.7);
const BALL_COLOR: Color = Color::rgb(1.0, 0.5, 0.5);
const BRICK_COLOR: Color = Color::rgb(0.5, 0.5, 1.0);
const WALL_COLOR: Color = Color::rgb(0.8, 0.8, 0.8);
const TEXT_COLOR: Color = Color::rgb(0.5, 0.5, 1.0);
const SCORE_COLOR: Color = Color::rgb(1.0, 0.5, 0.5);
fn main() {
App::new()
.add_plugins(DefaultPlugins)
.insert_resource(Scoreboard { score: 0 })
.insert_resource(ClearColor(BACKGROUND_COLOR))
.add_startup_system(setup)
.add_event::<CollisionEvent>()
// Add our gameplay simulation systems to the fixed timestep schedule
.add_systems_to_schedule(
CoreSchedule::FixedUpdate,
(
check_for_collisions,
apply_velocity.before(check_for_collisions),
move_paddle
.before(check_for_collisions)
.after(apply_velocity),
play_collision_sound.after(check_for_collisions),
),
)
// Configure how frequently our gameplay systems are run
.insert_resource(FixedTime::new_from_secs(TIME_STEP))
.add_system(update_scoreboard)
.add_system(bevy::window::close_on_esc)
.run();
}
#[derive(Component)]
struct Paddle;
#[derive(Component)]
struct Ball;
#[derive(Component, Deref, DerefMut)]
struct Velocity(Vec2);
#[derive(Component)]
struct Collider;
#[derive(Default)]
struct CollisionEvent;
#[derive(Component)]
struct Brick;
#[derive(Resource)]
struct CollisionSound(Handle<AudioSource>);
// This bundle is a collection of the components that define a "wall" in our game
#[derive(Bundle)]
struct WallBundle {
// You can nest bundles inside of other bundles like this
// Allowing you to compose their functionality
sprite_bundle: SpriteBundle,
collider: Collider,
}
/// Which side of the arena is this wall located on?
enum WallLocation {
Left,
Right,
Bottom,
Top,
}
impl WallLocation {
fn position(&self) -> Vec2 {
match self {
WallLocation::Left => Vec2::new(LEFT_WALL, 0.),
WallLocation::Right => Vec2::new(RIGHT_WALL, 0.),
WallLocation::Bottom => Vec2::new(0., BOTTOM_WALL),
WallLocation::Top => Vec2::new(0., TOP_WALL),
}
}
fn size(&self) -> Vec2 {
let arena_height = TOP_WALL - BOTTOM_WALL;
let arena_width = RIGHT_WALL - LEFT_WALL;
// Make sure we haven't messed up our constants
assert!(arena_height > 0.0);
assert!(arena_width > 0.0);
match self {
WallLocation::Left | WallLocation::Right => {
Vec2::new(WALL_THICKNESS, arena_height + WALL_THICKNESS)
}
WallLocation::Bottom | WallLocation::Top => {
Vec2::new(arena_width + WALL_THICKNESS, WALL_THICKNESS)
}
}
}
}
impl WallBundle {
// This "builder method" allows us to reuse logic across our wall entities,
// making our code easier to read and less prone to bugs when we change the logic
fn new(location: WallLocation) -> WallBundle {
WallBundle {
sprite_bundle: SpriteBundle {
transform: Transform {
// We need to convert our Vec2 into a Vec3, by giving it a z-coordinate
// This is used to determine the order of our sprites
translation: location.position().extend(0.0),
// The z-scale of 2D objects must always be 1.0,
// or their ordering will be affected in surprising ways.
// See https://github.com/bevyengine/bevy/issues/4149
scale: location.size().extend(1.0),
..default()
},
sprite: Sprite {
color: WALL_COLOR,
..default()
},
..default()
},
collider: Collider,
}
}
}
// This resource tracks the game's score
#[derive(Resource)]
struct Scoreboard {
score: usize,
}
// Add the game's entities to our world
fn setup(
mut commands: Commands,
mut meshes: ResMut<Assets<Mesh>>,
mut materials: ResMut<Assets<ColorMaterial>>,
asset_server: Res<AssetServer>,
) {
// Camera
commands.spawn(Camera2dBundle::default());
// Sound
let ball_collision_sound = asset_server.load("sounds/breakout_collision.ogg");
commands.insert_resource(CollisionSound(ball_collision_sound));
// Paddle
let paddle_y = BOTTOM_WALL + GAP_BETWEEN_PADDLE_AND_FLOOR;
commands.spawn((
SpriteBundle {
transform: Transform {
translation: Vec3::new(0.0, paddle_y, 0.0),
scale: PADDLE_SIZE,
..default()
},
sprite: Sprite {
color: PADDLE_COLOR,
..default()
},
..default()
},
Paddle,
Collider,
));
// Ball
commands.spawn((
MaterialMesh2dBundle {
mesh: meshes.add(shape::Circle::default().into()).into(),
material: materials.add(ColorMaterial::from(BALL_COLOR)),
transform: Transform::from_translation(BALL_STARTING_POSITION).with_scale(BALL_SIZE),
..default()
},
Ball,
Velocity(INITIAL_BALL_DIRECTION.normalize() * BALL_SPEED),
));
// Scoreboard
commands.spawn(
TextBundle::from_sections([
TextSection::new(
"Score: ",
TextStyle {
font: asset_server.load("fonts/FiraSans-Bold.ttf"),
font_size: SCOREBOARD_FONT_SIZE,
color: TEXT_COLOR,
},
),
TextSection::from_style(TextStyle {
font: asset_server.load("fonts/FiraMono-Medium.ttf"),
font_size: SCOREBOARD_FONT_SIZE,
color: SCORE_COLOR,
}),
])
.with_style(Style {
position_type: PositionType::Absolute,
position: UiRect {
top: SCOREBOARD_TEXT_PADDING,
left: SCOREBOARD_TEXT_PADDING,
..default()
},
..default()
}),
);
// Walls
commands.spawn(WallBundle::new(WallLocation::Left));
commands.spawn(WallBundle::new(WallLocation::Right));
commands.spawn(WallBundle::new(WallLocation::Bottom));
commands.spawn(WallBundle::new(WallLocation::Top));
// Bricks
// Negative scales result in flipped sprites / meshes,
// which is definitely not what we want here
assert!(BRICK_SIZE.x > 0.0);
assert!(BRICK_SIZE.y > 0.0);
let total_width_of_bricks = (RIGHT_WALL - LEFT_WALL) - 2. * GAP_BETWEEN_BRICKS_AND_SIDES;
let bottom_edge_of_bricks = paddle_y + GAP_BETWEEN_PADDLE_AND_BRICKS;
let total_height_of_bricks = TOP_WALL - bottom_edge_of_bricks - GAP_BETWEEN_BRICKS_AND_CEILING;
assert!(total_width_of_bricks > 0.0);
assert!(total_height_of_bricks > 0.0);
// Given the space available, compute how many rows and columns of bricks we can fit
let n_columns = (total_width_of_bricks / (BRICK_SIZE.x + GAP_BETWEEN_BRICKS)).floor() as usize;
let n_rows = (total_height_of_bricks / (BRICK_SIZE.y + GAP_BETWEEN_BRICKS)).floor() as usize;
let n_vertical_gaps = n_columns - 1;
// Because we need to round the number of columns,
// the space on the top and sides of the bricks only captures a lower bound, not an exact value
let center_of_bricks = (LEFT_WALL + RIGHT_WALL) / 2.0;
let left_edge_of_bricks = center_of_bricks
// Space taken up by the bricks
- (n_columns as f32 / 2.0 * BRICK_SIZE.x)
// Space taken up by the gaps
- n_vertical_gaps as f32 / 2.0 * GAP_BETWEEN_BRICKS;
// In Bevy, the `translation` of an entity describes the center point,
// not its bottom-left corner
let offset_x = left_edge_of_bricks + BRICK_SIZE.x / 2.;
let offset_y = bottom_edge_of_bricks + BRICK_SIZE.y / 2.;
for row in 0..n_rows {
for column in 0..n_columns {
let brick_position = Vec2::new(
offset_x + column as f32 * (BRICK_SIZE.x + GAP_BETWEEN_BRICKS),
offset_y + row as f32 * (BRICK_SIZE.y + GAP_BETWEEN_BRICKS),
);
// brick
commands.spawn((
SpriteBundle {
sprite: Sprite {
color: BRICK_COLOR,
..default()
},
transform: Transform {
translation: brick_position.extend(0.0),
scale: Vec3::new(BRICK_SIZE.x, BRICK_SIZE.y, 1.0),
..default()
},
..default()
},
Brick,
Collider,
));
}
}
}
fn move_paddle(
keyboard_input: Res<Input<KeyCode>>,
mut query: Query<&mut Transform, With<Paddle>>,
) {
let mut paddle_transform = query.single_mut();
let mut direction = 0.0;
if keyboard_input.pressed(KeyCode::Left) {
direction -= 1.0;
}
if keyboard_input.pressed(KeyCode::Right) {
direction += 1.0;
}
// Calculate the new horizontal paddle position based on player input
let new_paddle_position = paddle_transform.translation.x + direction * PADDLE_SPEED * TIME_STEP;
// Update the paddle position,
// making sure it doesn't cause the paddle to leave the arena
let left_bound = LEFT_WALL + WALL_THICKNESS / 2.0 + PADDLE_SIZE.x / 2.0 + PADDLE_PADDING;
let right_bound = RIGHT_WALL - WALL_THICKNESS / 2.0 - PADDLE_SIZE.x / 2.0 - PADDLE_PADDING;
paddle_transform.translation.x = new_paddle_position.clamp(left_bound, right_bound);
}
fn apply_velocity(mut query: Query<(&mut Transform, &Velocity)>) {
for (mut transform, velocity) in &mut query {
transform.translation.x += velocity.x * TIME_STEP;
transform.translation.y += velocity.y * TIME_STEP;
}
}
fn update_scoreboard(scoreboard: Res<Scoreboard>, mut query: Query<&mut Text>) {
let mut text = query.single_mut();
text.sections[1].value = scoreboard.score.to_string();
}
fn check_for_collisions(
mut commands: Commands,
mut scoreboard: ResMut<Scoreboard>,
mut ball_query: Query<(&mut Velocity, &Transform), With<Ball>>,
collider_query: Query<(Entity, &Transform, Option<&Brick>), With<Collider>>,
mut collision_events: EventWriter<CollisionEvent>,
) {
let (mut ball_velocity, ball_transform) = ball_query.single_mut();
let ball_size = ball_transform.scale.truncate();
// check collision with walls
for (collider_entity, transform, maybe_brick) in &collider_query {
let collision = collide(
ball_transform.translation,
ball_size,
transform.translation,
transform.scale.truncate(),
);
if let Some(collision) = collision {
// Sends a collision event so that other systems can react to the collision
collision_events.send_default();
// Bricks should be despawned and increment the scoreboard on collision
if maybe_brick.is_some() {
scoreboard.score += 1;
commands.entity(collider_entity).despawn();
}
// reflect the ball when it collides
let mut reflect_x = false;
let mut reflect_y = false;
// only reflect if the ball's velocity is going in the opposite direction of the
// collision
match collision {
Collision::Left => reflect_x = ball_velocity.x > 0.0,
Collision::Right => reflect_x = ball_velocity.x < 0.0,
Collision::Top => reflect_y = ball_velocity.y < 0.0,
Collision::Bottom => reflect_y = ball_velocity.y > 0.0,
Collision::Inside => { /* do nothing */ }
}
// reflect velocity on the x-axis if we hit something on the x-axis
if reflect_x {
ball_velocity.x = -ball_velocity.x;
}
// reflect velocity on the y-axis if we hit something on the y-axis
if reflect_y {
ball_velocity.y = -ball_velocity.y;
}
}
}
}
fn play_collision_sound(
mut collision_events: EventReader<CollisionEvent>,
audio: Res<Audio>,
sound: Res<CollisionSound>,
) {
// Play a sound once per frame if a collision occurred.
if !collision_events.is_empty() {
// This prevents events staying active on the next frame.
collision_events.clear();
audio.play(sound.0.clone());
}
}