bevy/examples/app/headless_renderer.rs
Vitaliy Sapronenko 2aed777435
Fixed incorrect behaviour of headless_renderer depending on image dimensions (#13388)
# Objective

- Fixes #13384 .

## Solution

- If the image became wider when copying from the texture to the buffer,
then the data is reduced to its original size when copying from the
buffer to the image.

## Testing

- Ran example with 1919x1080 resolution

![000](https://github.com/bevyengine/bevy/assets/17225606/47d95ed7-1c8c-4be4-a45a-1f485a3d6aa7)

---------

Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
Co-authored-by: François Mockers <francois.mockers@vleue.com>
2024-05-19 00:15:15 +00:00

549 lines
20 KiB
Rust

//! This example illustrates how to make headless renderer
//! derived from: <https://sotrh.github.io/learn-wgpu/showcase/windowless/#a-triangle-without-a-window>
//! It follows this steps:
//! 1. Render from camera to gpu-image render target
//! 2. Copy from gpu image to buffer using `ImageCopyDriver` node in `RenderGraph`
//! 3. Copy from buffer to channel using `receive_image_from_buffer` after `RenderSet::Render`
//! 4. Save from channel to random named file using `scene::update` at `PostUpdate` in `MainWorld`
//! 5. Exit if `single_image` setting is set
use bevy::{
app::{AppExit, ScheduleRunnerPlugin},
core_pipeline::tonemapping::Tonemapping,
prelude::*,
render::{
camera::RenderTarget,
render_asset::{RenderAssetUsages, RenderAssets},
render_graph::{self, NodeRunError, RenderGraph, RenderGraphContext, RenderLabel},
render_resource::{
Buffer, BufferDescriptor, BufferUsages, CommandEncoderDescriptor, Extent3d,
ImageCopyBuffer, ImageDataLayout, Maintain, MapMode, TextureDimension, TextureFormat,
TextureUsages,
},
renderer::{RenderContext, RenderDevice, RenderQueue},
texture::{BevyDefault, TextureFormatPixelInfo},
Extract, Render, RenderApp, RenderSet,
},
};
use crossbeam_channel::{Receiver, Sender};
use std::{
ops::{Deref, DerefMut},
path::PathBuf,
sync::{
atomic::{AtomicBool, Ordering},
Arc,
},
time::Duration,
};
// To communicate between the main world and the render world we need a channel.
// Since the main world and render world run in parallel, there will always be a frame of latency
// between the data sent from the render world and the data received in the main world
//
// frame n => render world sends data through the channel at the end of the frame
// frame n + 1 => main world receives the data
//
// Receiver and Sender are kept in resources because there is single camera and single target
// That's why there is single images role, if you want to differentiate images
// from different cameras, you should keep Receiver in ImageCopier and Sender in ImageToSave
// or send some id with data
/// This will receive asynchronously any data sent from the render world
#[derive(Resource, Deref)]
struct MainWorldReceiver(Receiver<Vec<u8>>);
/// This will send asynchronously any data to the main world
#[derive(Resource, Deref)]
struct RenderWorldSender(Sender<Vec<u8>>);
// Parameters of resulting image
struct AppConfig {
width: u32,
height: u32,
single_image: bool,
}
fn main() {
let config = AppConfig {
width: 1920,
height: 1080,
single_image: true,
};
// setup frame capture
App::new()
.insert_resource(SceneController::new(
config.width,
config.height,
config.single_image,
))
.insert_resource(ClearColor(Color::srgb_u8(0, 0, 0)))
.add_plugins(
DefaultPlugins
.set(ImagePlugin::default_nearest())
// Do not create a window on startup.
.set(WindowPlugin {
primary_window: None,
exit_condition: bevy::window::ExitCondition::DontExit,
close_when_requested: false,
}),
)
.add_plugins(ImageCopyPlugin)
// headless frame capture
.add_plugins(CaptureFramePlugin)
.add_plugins(ScheduleRunnerPlugin::run_loop(
// Run 60 times per second.
Duration::from_secs_f64(1.0 / 60.0),
))
.init_resource::<SceneController>()
.add_systems(Startup, setup)
.run();
}
/// Capture image settings and state
#[derive(Debug, Default, Resource)]
struct SceneController {
state: SceneState,
name: String,
width: u32,
height: u32,
single_image: bool,
}
impl SceneController {
pub fn new(width: u32, height: u32, single_image: bool) -> SceneController {
SceneController {
state: SceneState::BuildScene,
name: String::from(""),
width,
height,
single_image,
}
}
}
/// Capture image state
#[derive(Debug, Default)]
enum SceneState {
#[default]
// State before any rendering
BuildScene,
// Rendering state, stores the number of frames remaining before saving the image
Render(u32),
}
fn setup(
mut commands: Commands,
mut meshes: ResMut<Assets<Mesh>>,
mut materials: ResMut<Assets<StandardMaterial>>,
mut images: ResMut<Assets<Image>>,
mut scene_controller: ResMut<SceneController>,
render_device: Res<RenderDevice>,
) {
let render_target = setup_render_target(
&mut commands,
&mut images,
&render_device,
&mut scene_controller,
// pre_roll_frames should be big enough for full scene render,
// but the bigger it is, the longer example will run.
// To visualize stages of scene rendering change this param to 0
// and change AppConfig::single_image to false in main
// Stages are:
// 1. Transparent image
// 2. Few black box images
// 3. Fully rendered scene images
// Exact number depends on device speed, device load and scene size
40,
"main_scene".into(),
);
// Scene example for non black box picture
// circular base
commands.spawn(PbrBundle {
mesh: meshes.add(Circle::new(4.0)),
material: materials.add(Color::WHITE),
transform: Transform::from_rotation(Quat::from_rotation_x(-std::f32::consts::FRAC_PI_2)),
..default()
});
// cube
commands.spawn(PbrBundle {
mesh: meshes.add(Cuboid::new(1.0, 1.0, 1.0)),
material: materials.add(Color::srgb_u8(124, 144, 255)),
transform: Transform::from_xyz(0.0, 0.5, 0.0),
..default()
});
// light
commands.spawn(PointLightBundle {
point_light: PointLight {
shadows_enabled: true,
..default()
},
transform: Transform::from_xyz(4.0, 8.0, 4.0),
..default()
});
commands.spawn(Camera3dBundle {
transform: Transform::from_xyz(-2.5, 4.5, 9.0).looking_at(Vec3::ZERO, Vec3::Y),
tonemapping: Tonemapping::None,
camera: Camera {
// render to image
target: render_target,
..default()
},
..default()
});
}
/// Plugin for Render world part of work
pub struct ImageCopyPlugin;
impl Plugin for ImageCopyPlugin {
fn build(&self, app: &mut App) {
let (s, r) = crossbeam_channel::unbounded();
let render_app = app
.insert_resource(MainWorldReceiver(r))
.sub_app_mut(RenderApp);
let mut graph = render_app.world_mut().resource_mut::<RenderGraph>();
graph.add_node(ImageCopy, ImageCopyDriver);
graph.add_node_edge(bevy::render::graph::CameraDriverLabel, ImageCopy);
render_app
.insert_resource(RenderWorldSender(s))
// Make ImageCopiers accessible in RenderWorld system and plugin
.add_systems(ExtractSchedule, image_copy_extract)
// Receives image data from buffer to channel
// so we need to run it after the render graph is done
.add_systems(Render, receive_image_from_buffer.after(RenderSet::Render));
}
}
/// Setups render target and cpu image for saving, changes scene state into render mode
fn setup_render_target(
commands: &mut Commands,
images: &mut ResMut<Assets<Image>>,
render_device: &Res<RenderDevice>,
scene_controller: &mut ResMut<SceneController>,
pre_roll_frames: u32,
scene_name: String,
) -> RenderTarget {
let size = Extent3d {
width: scene_controller.width,
height: scene_controller.height,
..Default::default()
};
// This is the texture that will be rendered to.
let mut render_target_image = Image::new_fill(
size,
TextureDimension::D2,
&[0; 4],
TextureFormat::bevy_default(),
RenderAssetUsages::default(),
);
render_target_image.texture_descriptor.usage |=
TextureUsages::COPY_SRC | TextureUsages::RENDER_ATTACHMENT | TextureUsages::TEXTURE_BINDING;
let render_target_image_handle = images.add(render_target_image);
// This is the texture that will be copied to.
let cpu_image = Image::new_fill(
size,
TextureDimension::D2,
&[0; 4],
TextureFormat::bevy_default(),
RenderAssetUsages::default(),
);
let cpu_image_handle = images.add(cpu_image);
commands.spawn(ImageCopier::new(
render_target_image_handle.clone(),
size,
render_device,
));
commands.spawn(ImageToSave(cpu_image_handle));
scene_controller.state = SceneState::Render(pre_roll_frames);
scene_controller.name = scene_name;
RenderTarget::Image(render_target_image_handle)
}
/// Setups image saver
pub struct CaptureFramePlugin;
impl Plugin for CaptureFramePlugin {
fn build(&self, app: &mut App) {
info!("Adding CaptureFramePlugin");
app.add_systems(PostUpdate, update);
}
}
/// `ImageCopier` aggregator in `RenderWorld`
#[derive(Clone, Default, Resource, Deref, DerefMut)]
struct ImageCopiers(pub Vec<ImageCopier>);
/// Used by `ImageCopyDriver` for copying from render target to buffer
#[derive(Clone, Component)]
struct ImageCopier {
buffer: Buffer,
enabled: Arc<AtomicBool>,
src_image: Handle<Image>,
}
impl ImageCopier {
pub fn new(
src_image: Handle<Image>,
size: Extent3d,
render_device: &RenderDevice,
) -> ImageCopier {
let padded_bytes_per_row =
RenderDevice::align_copy_bytes_per_row((size.width) as usize) * 4;
let cpu_buffer = render_device.create_buffer(&BufferDescriptor {
label: None,
size: padded_bytes_per_row as u64 * size.height as u64,
usage: BufferUsages::MAP_READ | BufferUsages::COPY_DST,
mapped_at_creation: false,
});
ImageCopier {
buffer: cpu_buffer,
src_image,
enabled: Arc::new(AtomicBool::new(true)),
}
}
pub fn enabled(&self) -> bool {
self.enabled.load(Ordering::Relaxed)
}
}
/// Extracting `ImageCopier`s into render world, because `ImageCopyDriver` accesses them
fn image_copy_extract(mut commands: Commands, image_copiers: Extract<Query<&ImageCopier>>) {
commands.insert_resource(ImageCopiers(
image_copiers.iter().cloned().collect::<Vec<ImageCopier>>(),
));
}
/// `RenderGraph` label for `ImageCopyDriver`
#[derive(Debug, PartialEq, Eq, Clone, Hash, RenderLabel)]
struct ImageCopy;
/// `RenderGraph` node
#[derive(Default)]
struct ImageCopyDriver;
// Copies image content from render target to buffer
impl render_graph::Node for ImageCopyDriver {
fn run(
&self,
_graph: &mut RenderGraphContext,
render_context: &mut RenderContext,
world: &World,
) -> Result<(), NodeRunError> {
let image_copiers = world.get_resource::<ImageCopiers>().unwrap();
let gpu_images = world
.get_resource::<RenderAssets<bevy::render::texture::GpuImage>>()
.unwrap();
for image_copier in image_copiers.iter() {
if !image_copier.enabled() {
continue;
}
let src_image = gpu_images.get(&image_copier.src_image).unwrap();
let mut encoder = render_context
.render_device()
.create_command_encoder(&CommandEncoderDescriptor::default());
let block_dimensions = src_image.texture_format.block_dimensions();
let block_size = src_image.texture_format.block_copy_size(None).unwrap();
// Calculating correct size of image row because
// copy_texture_to_buffer can copy image only by rows aligned wgpu::COPY_BYTES_PER_ROW_ALIGNMENT
// That's why image in buffer can be little bit wider
// This should be taken into account at copy from buffer stage
let padded_bytes_per_row = RenderDevice::align_copy_bytes_per_row(
(src_image.size.x as usize / block_dimensions.0 as usize) * block_size as usize,
);
let texture_extent = Extent3d {
width: src_image.size.x,
height: src_image.size.y,
depth_or_array_layers: 1,
};
encoder.copy_texture_to_buffer(
src_image.texture.as_image_copy(),
ImageCopyBuffer {
buffer: &image_copier.buffer,
layout: ImageDataLayout {
offset: 0,
bytes_per_row: Some(
std::num::NonZeroU32::new(padded_bytes_per_row as u32)
.unwrap()
.into(),
),
rows_per_image: None,
},
},
texture_extent,
);
let render_queue = world.get_resource::<RenderQueue>().unwrap();
render_queue.submit(std::iter::once(encoder.finish()));
}
Ok(())
}
}
/// runs in render world after Render stage to send image from buffer via channel (receiver is in main world)
fn receive_image_from_buffer(
image_copiers: Res<ImageCopiers>,
render_device: Res<RenderDevice>,
sender: Res<RenderWorldSender>,
) {
for image_copier in image_copiers.0.iter() {
if !image_copier.enabled() {
continue;
}
// Finally time to get our data back from the gpu.
// First we get a buffer slice which represents a chunk of the buffer (which we
// can't access yet).
// We want the whole thing so use unbounded range.
let buffer_slice = image_copier.buffer.slice(..);
// Now things get complicated. WebGPU, for safety reasons, only allows either the GPU
// or CPU to access a buffer's contents at a time. We need to "map" the buffer which means
// flipping ownership of the buffer over to the CPU and making access legal. We do this
// with `BufferSlice::map_async`.
//
// The problem is that map_async is not an async function so we can't await it. What
// we need to do instead is pass in a closure that will be executed when the slice is
// either mapped or the mapping has failed.
//
// The problem with this is that we don't have a reliable way to wait in the main
// code for the buffer to be mapped and even worse, calling get_mapped_range or
// get_mapped_range_mut prematurely will cause a panic, not return an error.
//
// Using channels solves this as awaiting the receiving of a message from
// the passed closure will force the outside code to wait. It also doesn't hurt
// if the closure finishes before the outside code catches up as the message is
// buffered and receiving will just pick that up.
//
// It may also be worth noting that although on native, the usage of asynchronous
// channels is wholly unnecessary, for the sake of portability to WASM
// we'll use async channels that work on both native and WASM.
let (s, r) = crossbeam_channel::bounded(1);
// Maps the buffer so it can be read on the cpu
buffer_slice.map_async(MapMode::Read, move |r| match r {
// This will execute once the gpu is ready, so after the call to poll()
Ok(r) => s.send(r).expect("Failed to send map update"),
Err(err) => panic!("Failed to map buffer {err}"),
});
// In order for the mapping to be completed, one of three things must happen.
// One of those can be calling `Device::poll`. This isn't necessary on the web as devices
// are polled automatically but natively, we need to make sure this happens manually.
// `Maintain::Wait` will cause the thread to wait on native but not on WebGpu.
// This blocks until the gpu is done executing everything
render_device.poll(Maintain::wait()).panic_on_timeout();
// This blocks until the buffer is mapped
r.recv().expect("Failed to receive the map_async message");
// This could fail on app exit, if Main world clears resources (including receiver) while Render world still renders
let _ = sender.send(buffer_slice.get_mapped_range().to_vec());
// We need to make sure all `BufferView`'s are dropped before we do what we're about
// to do.
// Unmap so that we can copy to the staging buffer in the next iteration.
image_copier.buffer.unmap();
}
}
/// CPU-side image for saving
#[derive(Component, Deref, DerefMut)]
struct ImageToSave(Handle<Image>);
// Takes from channel image content sent from render world and saves it to disk
fn update(
images_to_save: Query<&ImageToSave>,
receiver: Res<MainWorldReceiver>,
mut images: ResMut<Assets<Image>>,
mut scene_controller: ResMut<SceneController>,
mut app_exit_writer: EventWriter<AppExit>,
mut file_number: Local<u32>,
) {
if let SceneState::Render(n) = scene_controller.state {
if n < 1 {
// We don't want to block the main world on this,
// so we use try_recv which attempts to receive without blocking
let mut image_data = Vec::new();
while let Ok(data) = receiver.try_recv() {
// image generation could be faster than saving to fs,
// that's why use only last of them
image_data = data;
}
if !image_data.is_empty() {
for image in images_to_save.iter() {
// Fill correct data from channel to image
let img_bytes = images.get_mut(image.id()).unwrap();
// We need to ensure that this works regardless of the image dimensions
// If the image became wider when copying from the texture to the buffer,
// then the data is reduced to its original size when copying from the buffer to the image.
let row_bytes = img_bytes.width() as usize
* img_bytes.texture_descriptor.format.pixel_size();
let aligned_row_bytes = RenderDevice::align_copy_bytes_per_row(row_bytes);
if row_bytes == aligned_row_bytes {
img_bytes.data.clone_from(&image_data);
} else {
// shrink data to original image size
img_bytes.data = image_data
.chunks(aligned_row_bytes)
.take(img_bytes.height() as usize)
.flat_map(|row| &row[..row_bytes.min(row.len())])
.cloned()
.collect();
}
// Create RGBA Image Buffer
let img = match img_bytes.clone().try_into_dynamic() {
Ok(img) => img.to_rgba8(),
Err(e) => panic!("Failed to create image buffer {e:?}"),
};
// Prepare directory for images, test_images in bevy folder is used here for example
// You should choose the path depending on your needs
let images_dir = PathBuf::from(env!("CARGO_MANIFEST_DIR")).join("test_images");
info!("Saving image to: {images_dir:?}");
std::fs::create_dir_all(&images_dir).unwrap();
// Choose filename starting from 000.png
let image_path = images_dir.join(format!("{:03}.png", file_number.deref()));
*file_number.deref_mut() += 1;
// Finally saving image to file, this heavy blocking operation is kept here
// for example simplicity, but in real app you should move it to a separate task
if let Err(e) = img.save(image_path) {
panic!("Failed to save image: {}", e);
};
}
if scene_controller.single_image {
app_exit_writer.send(AppExit::Success);
}
}
} else {
// clears channel for skipped frames
while receiver.try_recv().is_ok() {}
scene_controller.state = SceneState::Render(n - 1);
}
}
}