bevy/crates/bevy_pbr/Cargo.toml
JMS55 aa626e4f0b
Per-meshlet compressed vertex data (#15643)
# Objective
- Prepare for streaming by storing vertex data per-meshlet, rather than
per-mesh (this means duplicating vertices per-meshlet)
- Compress vertex data to reduce the cost of this

## Solution
The important parts are in from_mesh.rs, the changes to the Meshlet type
in asset.rs, and the changes in meshlet_bindings.wgsl. Everything else
is pretty secondary/boilerplate/straightforward changes.

- Positions are quantized in centimeters with a user-provided power of 2
factor (ideally auto-determined, but that's a TODO for the future),
encoded as an offset relative to the minimum value within the meshlet,
and then stored as a packed list of bits using the minimum number of
bits needed for each vertex position channel for that meshlet
- E.g. quantize positions (lossly, throws away precision that's not
needed leading to using less bits in the bitstream encoding)
- Get the min/max quantized value of each X/Y/Z channel of the quantized
positions within a meshlet
- Encode values relative to the min value of the meshlet. E.g. convert
from [min, max] to [0, max - min]
- The new max value in the meshlet is (max - min), which only takes N
bits, so we only need N bits to store each channel within the meshlet
(lossless)
- We can store the min value and that it takes N bits per channel in the
meshlet metadata, and reconstruct the position from the bitstream
- Normals are octahedral encoded and than snorm2x16 packed and stored as
a single u32.
- Would be better to implement the precise variant of octhedral encoding
for extra precision (no extra decode cost), but decided to keep it
simple for now and leave that as a followup
- Tried doing a quantizing and bitstream encoding scheme like I did for
positions, but struggled to get it smaller. Decided to go with this for
simplicity for now
- UVs are uncompressed and take a full 64bits per vertex which is
expensive
  - In the future this should be improved
- Tangents, as of the previous PR, are not explicitly stored and are
instead derived from screen space gradients
- While I'm here, split up MeshletMeshSaverLoader into two separate
types

Other future changes include implementing a smaller encoding of triangle
data (3 u8 indices = 24 bits per triangle currently), and more
disk-oriented compression schemes.

References:
* "A Deep Dive into UE5's Nanite Virtualized Geometry"
https://advances.realtimerendering.com/s2021/Karis_Nanite_SIGGRAPH_Advances_2021_final.pdf#page=128
(also available on youtube)
* "Towards Practical Meshlet Compression"
https://arxiv.org/pdf/2404.06359
* "Vertex quantization in Omniforce Game Engine"
https://daniilvinn.github.io/2024/05/04/omniforce-vertex-quantization.html

## Testing

- Did you test these changes? If so, how?
- Converted the stanford bunny, and rendered it with a debug material
showing normals, and confirmed that it's identical to what's on main.
EDIT: See additional testing in the comments below.
- Are there any parts that need more testing?
- Could use some more size comparisons on various meshes, and testing
different quantization factors. Not sure if 4 is a good default. EDIT:
See additional testing in the comments below.
- Also did not test runtime performance of the shaders. EDIT: See
additional testing in the comments below.
- How can other people (reviewers) test your changes? Is there anything
specific they need to know?
- Use my unholy script, replacing the meshlet example
https://paste.rs/7xQHk.rs (must make MeshletMesh fields pub instead of
pub crate, must add lz4_flex as a dev-dependency) (must compile with
meshlet and meshlet_processor features, mesh must have only positions,
normals, and UVs, no vertex colors or tangents)

---

## Migration Guide
- TBD by JMS55 at the end of the release
2024-10-08 18:42:55 +00:00

75 lines
2.5 KiB
TOML

[package]
name = "bevy_pbr"
version = "0.15.0-dev"
edition = "2021"
description = "Adds PBR rendering to Bevy Engine"
homepage = "https://bevyengine.org"
repository = "https://github.com/bevyengine/bevy"
license = "MIT OR Apache-2.0"
keywords = ["bevy"]
[features]
webgl = []
webgpu = []
pbr_transmission_textures = []
pbr_multi_layer_material_textures = []
pbr_anisotropy_texture = []
shader_format_glsl = ["bevy_render/shader_format_glsl"]
trace = ["bevy_render/trace"]
ios_simulator = ["bevy_render/ios_simulator"]
# Enables the meshlet renderer for dense high-poly scenes (experimental)
meshlet = ["dep:lz4_flex", "dep:thiserror", "dep:range-alloc", "dep:bevy_tasks"]
# Enables processing meshes into meshlet meshes
meshlet_processor = [
"meshlet",
"dep:meshopt",
"dep:metis",
"dep:itertools",
"dep:bitvec",
]
[dependencies]
# bevy
bevy_app = { path = "../bevy_app", version = "0.15.0-dev" }
bevy_asset = { path = "../bevy_asset", version = "0.15.0-dev" }
bevy_color = { path = "../bevy_color", version = "0.15.0-dev" }
bevy_core_pipeline = { path = "../bevy_core_pipeline", version = "0.15.0-dev" }
bevy_derive = { path = "../bevy_derive", version = "0.15.0-dev" }
bevy_ecs = { path = "../bevy_ecs", version = "0.15.0-dev" }
bevy_math = { path = "../bevy_math", version = "0.15.0-dev" }
bevy_reflect = { path = "../bevy_reflect", version = "0.15.0-dev", features = [
"bevy",
] }
bevy_render = { path = "../bevy_render", version = "0.15.0-dev" }
bevy_tasks = { path = "../bevy_tasks", version = "0.15.0-dev", optional = true }
bevy_transform = { path = "../bevy_transform", version = "0.15.0-dev" }
bevy_utils = { path = "../bevy_utils", version = "0.15.0-dev" }
bevy_window = { path = "../bevy_window", version = "0.15.0-dev" }
# other
bitflags = "2.3"
fixedbitset = "0.5"
# meshlet
lz4_flex = { version = "0.11", default-features = false, features = [
"frame",
], optional = true }
thiserror = { version = "1", optional = true }
range-alloc = { version = "0.1.3", optional = true }
meshopt = { version = "0.3.0", optional = true }
metis = { version = "0.2", optional = true }
itertools = { version = "0.13", optional = true }
bitvec = { version = "1", optional = true }
# direct dependency required for derive macro
bytemuck = { version = "1", features = ["derive", "must_cast"] }
radsort = "0.1"
smallvec = "1.6"
nonmax = "0.5"
static_assertions = "1"
[lints]
workspace = true
[package.metadata.docs.rs]
rustdoc-args = ["-Zunstable-options", "--generate-link-to-definition"]
all-features = true