mirror of
https://github.com/bevyengine/bevy
synced 2024-12-21 02:23:08 +00:00
015f2c69ca
# Objective Continue improving the user experience of our UI Node API in the direction specified by [Bevy's Next Generation Scene / UI System](https://github.com/bevyengine/bevy/discussions/14437) ## Solution As specified in the document above, merge `Style` fields into `Node`, and move "computed Node fields" into `ComputedNode` (I chose this name over something like `ComputedNodeLayout` because it currently contains more than just layout info. If we want to break this up / rename these concepts, lets do that in a separate PR). `Style` has been removed. This accomplishes a number of goals: ## Ergonomics wins Specifying both `Node` and `Style` is now no longer required for non-default styles Before: ```rust commands.spawn(( Node::default(), Style { width: Val::Px(100.), ..default() }, )); ``` After: ```rust commands.spawn(Node { width: Val::Px(100.), ..default() }); ``` ## Conceptual clarity `Style` was never a comprehensive "style sheet". It only defined "core" style properties that all `Nodes` shared. Any "styled property" that couldn't fit that mold had to be in a separate component. A "real" style system would style properties _across_ components (`Node`, `Button`, etc). We have plans to build a true style system (see the doc linked above). By moving the `Style` fields to `Node`, we fully embrace `Node` as the driving concept and remove the "style system" confusion. ## Next Steps * Consider identifying and splitting out "style properties that aren't core to Node". This should not happen for Bevy 0.15. --- ## Migration Guide Move any fields set on `Style` into `Node` and replace all `Style` component usage with `Node`. Before: ```rust commands.spawn(( Node::default(), Style { width: Val::Px(100.), ..default() }, )); ``` After: ```rust commands.spawn(Node { width: Val::Px(100.), ..default() }); ``` For any usage of the "computed node properties" that used to live on `Node`, use `ComputedNode` instead: Before: ```rust fn system(nodes: Query<&Node>) { for node in &nodes { let computed_size = node.size(); } } ``` After: ```rust fn system(computed_nodes: Query<&ComputedNode>) { for computed_node in &computed_nodes { let computed_size = computed_node.size(); } } ```
227 lines
7.4 KiB
Rust
227 lines
7.4 KiB
Rust
//! This example shows how to align the orientations of objects in 3D space along two axes using the `Transform::align` API.
|
|
|
|
use bevy::{
|
|
color::palettes::basic::{GRAY, RED, WHITE},
|
|
input::mouse::{AccumulatedMouseMotion, MouseButtonInput},
|
|
math::StableInterpolate,
|
|
prelude::*,
|
|
};
|
|
use rand::{Rng, SeedableRng};
|
|
use rand_chacha::ChaCha8Rng;
|
|
|
|
fn main() {
|
|
App::new()
|
|
.add_plugins(DefaultPlugins)
|
|
.add_systems(Startup, setup)
|
|
.add_systems(Update, (draw_ship_axes, draw_random_axes))
|
|
.add_systems(Update, (handle_keypress, handle_mouse, rotate_ship).chain())
|
|
.run();
|
|
}
|
|
|
|
/// This struct stores metadata for a single rotational move of the ship
|
|
#[derive(Component, Default)]
|
|
struct Ship {
|
|
/// The target transform of the ship move, the endpoint of interpolation
|
|
target_transform: Transform,
|
|
|
|
/// Whether the ship is currently in motion; allows motion to be paused
|
|
in_motion: bool,
|
|
}
|
|
|
|
#[derive(Component)]
|
|
struct RandomAxes(Dir3, Dir3);
|
|
|
|
#[derive(Component)]
|
|
struct Instructions;
|
|
|
|
#[derive(Resource)]
|
|
struct MousePressed(bool);
|
|
|
|
#[derive(Resource)]
|
|
struct SeededRng(ChaCha8Rng);
|
|
|
|
// Setup
|
|
|
|
fn setup(
|
|
mut commands: Commands,
|
|
mut meshes: ResMut<Assets<Mesh>>,
|
|
mut materials: ResMut<Assets<StandardMaterial>>,
|
|
asset_server: Res<AssetServer>,
|
|
) {
|
|
// We're seeding the PRNG here to make this example deterministic for testing purposes.
|
|
// This isn't strictly required in practical use unless you need your app to be deterministic.
|
|
let mut seeded_rng = ChaCha8Rng::seed_from_u64(19878367467712);
|
|
|
|
// A camera looking at the origin
|
|
commands.spawn((
|
|
Camera3d::default(),
|
|
Transform::from_xyz(3., 2.5, 4.).looking_at(Vec3::ZERO, Vec3::Y),
|
|
));
|
|
|
|
// A plane that we can sit on top of
|
|
commands.spawn((
|
|
Mesh3d(meshes.add(Plane3d::default().mesh().size(100.0, 100.0))),
|
|
MeshMaterial3d(materials.add(Color::srgb(0.3, 0.5, 0.3))),
|
|
Transform::from_xyz(0., -2., 0.),
|
|
));
|
|
|
|
// A light source
|
|
commands.spawn((
|
|
PointLight {
|
|
shadows_enabled: true,
|
|
..default()
|
|
},
|
|
Transform::from_xyz(4.0, 7.0, -4.0),
|
|
));
|
|
|
|
// Initialize random axes
|
|
let first = seeded_rng.gen();
|
|
let second = seeded_rng.gen();
|
|
commands.spawn(RandomAxes(first, second));
|
|
|
|
// Finally, our ship that is going to rotate
|
|
commands.spawn((
|
|
SceneRoot(
|
|
asset_server
|
|
.load(GltfAssetLabel::Scene(0).from_asset("models/ship/craft_speederD.gltf")),
|
|
),
|
|
Ship {
|
|
target_transform: random_axes_target_alignment(&RandomAxes(first, second)),
|
|
..default()
|
|
},
|
|
));
|
|
|
|
// Instructions for the example
|
|
commands.spawn((
|
|
Text::new(
|
|
"The bright red axis is the primary alignment axis, and it will always be\n\
|
|
made to coincide with the primary target direction (white) exactly.\n\
|
|
The fainter red axis is the secondary alignment axis, and it is made to\n\
|
|
line up with the secondary target direction (gray) as closely as possible.\n\
|
|
Press 'R' to generate random target directions.\n\
|
|
Press 'T' to align the ship to those directions.\n\
|
|
Click and drag the mouse to rotate the camera.\n\
|
|
Press 'H' to hide/show these instructions.",
|
|
),
|
|
Node {
|
|
position_type: PositionType::Absolute,
|
|
top: Val::Px(12.0),
|
|
left: Val::Px(12.0),
|
|
..default()
|
|
},
|
|
Instructions,
|
|
));
|
|
|
|
commands.insert_resource(MousePressed(false));
|
|
commands.insert_resource(SeededRng(seeded_rng));
|
|
}
|
|
|
|
// Update systems
|
|
|
|
// Draw the main and secondary axes on the rotating ship
|
|
fn draw_ship_axes(mut gizmos: Gizmos, ship_transform: Single<&Transform, With<Ship>>) {
|
|
// Local Z-axis arrow, negative direction
|
|
let z_ends = arrow_ends(*ship_transform, Vec3::NEG_Z, 1.5);
|
|
gizmos.arrow(z_ends.0, z_ends.1, RED);
|
|
|
|
// local X-axis arrow
|
|
let x_ends = arrow_ends(*ship_transform, Vec3::X, 1.5);
|
|
gizmos.arrow(x_ends.0, x_ends.1, Color::srgb(0.65, 0., 0.));
|
|
}
|
|
|
|
// Draw the randomly generated axes
|
|
fn draw_random_axes(mut gizmos: Gizmos, random_axes: Single<&RandomAxes>) {
|
|
let RandomAxes(v1, v2) = *random_axes;
|
|
gizmos.arrow(Vec3::ZERO, 1.5 * *v1, WHITE);
|
|
gizmos.arrow(Vec3::ZERO, 1.5 * *v2, GRAY);
|
|
}
|
|
|
|
// Actually update the ship's transform according to its initial source and target
|
|
fn rotate_ship(ship: Single<(&mut Ship, &mut Transform)>, time: Res<Time>) {
|
|
let (mut ship, mut ship_transform) = ship.into_inner();
|
|
|
|
if !ship.in_motion {
|
|
return;
|
|
}
|
|
|
|
let target_rotation = ship.target_transform.rotation;
|
|
|
|
ship_transform
|
|
.rotation
|
|
.smooth_nudge(&target_rotation, 3.0, time.delta_secs());
|
|
|
|
if ship_transform.rotation.angle_between(target_rotation) <= f32::EPSILON {
|
|
ship.in_motion = false;
|
|
}
|
|
}
|
|
|
|
// Handle user inputs from the keyboard for dynamically altering the scenario
|
|
fn handle_keypress(
|
|
mut ship: Single<&mut Ship>,
|
|
mut random_axes: Single<&mut RandomAxes>,
|
|
mut instructions_viz: Single<&mut Visibility, With<Instructions>>,
|
|
keyboard: Res<ButtonInput<KeyCode>>,
|
|
mut seeded_rng: ResMut<SeededRng>,
|
|
) {
|
|
if keyboard.just_pressed(KeyCode::KeyR) {
|
|
// Randomize the target axes
|
|
let first = seeded_rng.0.gen();
|
|
let second = seeded_rng.0.gen();
|
|
**random_axes = RandomAxes(first, second);
|
|
|
|
// Stop the ship and set it up to transform from its present orientation to the new one
|
|
ship.in_motion = false;
|
|
ship.target_transform = random_axes_target_alignment(&random_axes);
|
|
}
|
|
|
|
if keyboard.just_pressed(KeyCode::KeyT) {
|
|
ship.in_motion ^= true;
|
|
}
|
|
|
|
if keyboard.just_pressed(KeyCode::KeyH) {
|
|
if *instructions_viz.as_ref() == Visibility::Hidden {
|
|
**instructions_viz = Visibility::Visible;
|
|
} else {
|
|
**instructions_viz = Visibility::Hidden;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Handle user mouse input for panning the camera around
|
|
fn handle_mouse(
|
|
accumulated_mouse_motion: Res<AccumulatedMouseMotion>,
|
|
mut button_events: EventReader<MouseButtonInput>,
|
|
mut camera_transform: Single<&mut Transform, With<Camera>>,
|
|
mut mouse_pressed: ResMut<MousePressed>,
|
|
) {
|
|
// Store left-pressed state in the MousePressed resource
|
|
for button_event in button_events.read() {
|
|
if button_event.button != MouseButton::Left {
|
|
continue;
|
|
}
|
|
*mouse_pressed = MousePressed(button_event.state.is_pressed());
|
|
}
|
|
|
|
// If the mouse is not pressed, just ignore motion events
|
|
if !mouse_pressed.0 {
|
|
return;
|
|
}
|
|
if accumulated_mouse_motion.delta != Vec2::ZERO {
|
|
let displacement = accumulated_mouse_motion.delta.x;
|
|
camera_transform.rotate_around(Vec3::ZERO, Quat::from_rotation_y(-displacement / 75.));
|
|
}
|
|
}
|
|
|
|
// Helper functions (i.e. non-system functions)
|
|
|
|
fn arrow_ends(transform: &Transform, axis: Vec3, length: f32) -> (Vec3, Vec3) {
|
|
let local_vector = length * (transform.rotation * axis);
|
|
(transform.translation, transform.translation + local_vector)
|
|
}
|
|
|
|
// This is where `Transform::align` is actually used!
|
|
// Note that the choice of `Vec3::X` and `Vec3::Y` here matches the use of those in `draw_ship_axes`.
|
|
fn random_axes_target_alignment(random_axes: &RandomAxes) -> Transform {
|
|
let RandomAxes(first, second) = random_axes;
|
|
Transform::IDENTITY.aligned_by(Vec3::NEG_Z, *first, Vec3::X, *second)
|
|
}
|